All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.decompose.impl.chol.Cholesky Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.decompose.impl.chol;

import mikera.matrixx.AMatrix;
import mikera.matrixx.Matrix;
import mikera.matrixx.decompose.ICholeskyResult;

/**
 * This is an implementation of Cholesky that processes internal submatrices as blocks.  This is
 * done to reduce the number of cache issues.
 *
 * @author Peter Abeles
 */
public class Cholesky extends CholeskyCommon {

    private int blockWidth; // how wide the blocks should be
    private Matrix B; // row rectangular matrix

    private CholeskyHelper chol;
    
    /**
     * Default block width
     */
    private static final int BLOCK_WIDTH = 60;
    
    private Cholesky() { blockWidth = Cholesky.BLOCK_WIDTH; }
    private Cholesky(int blockWidth) { this.blockWidth = blockWidth; }
    
    /**
     * 

* Computes the Cholesky Decomposition (A = LU) of a matrix, taking * default block width = 60. *

*

* If the matrix is not positive definite then this function will return * null since it can't complete its computations. Not all errors will be * found. This is an efficient way to check for positive definiteness. *

* @param mat A symmetric positive definite matrix * @return A Cholesky Decomposition Result */ public static ICholeskyResult decompose(AMatrix mat) { return decompose(mat, BLOCK_WIDTH); } /** *

* Computes the Cholesky LDU Decomposition (A = LDU) of a matrix. *

*

* If the matrix is not positive definite then this function will return * null since it can't complete its computations. Not all errors will be * found. This is an efficient way to check for positive definiteness. *

* @param mat A symmetric positive definite matrix * @param blockWidth The width of a block. * @return ICholeskyResult if decomposition is successful, null otherwise. */ public static ICholeskyResult decompose(AMatrix mat, int blockWidth) { Cholesky temp = new Cholesky(blockWidth); return temp._decompose(mat); } /** *

* Performs Choleksy decomposition on the provided matrix. *

* *

* If the matrix is not positive definite then this function will return * null since it can't complete its computations. Not all errors will be * found. This is an efficient way to check for positive definiteness. *

* @param mat A symmetric positive definite matrix * @return CholeskyResult if decomposition is successful, null otherwise */ @Override protected ICholeskyResult _decompose( AMatrix mat ) { int rc=mat.rowCount(); int cc=mat.columnCount(); if( rc != cc ) { throw new IllegalArgumentException("Must be a square matrix."); } n = mat.rowCount(); this.vv = new double[n]; t=mat.toDoubleArray(); T = Matrix.wrap(rc, cc, t); if(mat.rowCount() < blockWidth) { B = Matrix.create(0,0); } else { B = Matrix.create(blockWidth,n); } chol = new CholeskyHelper(blockWidth); return decomposeLower(); } /** *

* Performs Choleksy decomposition on the provided matrix. *

* *

* If the matrix is not positive definite then this function will return * null since it can't complete its computations. Not all errors will be * found. *

* @return CholeskyResult if decomposition is successful, null otherwise */ @Override protected CholeskyResult decomposeLower() { if( n < blockWidth) // B.reshape(0,0, false); B = Matrix.create(0, 0); else // B.reshape(blockWidth,n-blockWidth, false); B = Matrix.create(blockWidth, n-blockWidth); int numBlocks = n / blockWidth; int remainder = n % blockWidth; if( remainder > 0 ) { numBlocks++; } /* * In Ejml, DenseMatrix64F has a mutable public field numcols. b_numCols is used here, in place of it. */ // B.numCols = n; int b_numCols = n; for( int i = 0; i < numBlocks; i++ ) { // B.numCols -= blockWidth; b_numCols -= blockWidth; // if( B.numCols > 0 ) { if( b_numCols > 0 ) { // apply cholesky to the current block if( !chol.decompose(T,(i*blockWidth)* T.columnCount() + i*blockWidth,blockWidth) ) return null; int indexSrc = i*blockWidth* T.columnCount() + (i+1)*blockWidth; int indexDst = (i+1)*blockWidth* T.columnCount() + i*blockWidth; // B = L^(-1) * B solveL_special(chol.getL().toMatrix().data, T,indexSrc,indexDst,B, b_numCols); int indexL = (i+1)*blockWidth*n + (i+1)*blockWidth; // c = c - a^T*a symmRankTranA_sub(B, T,indexL, b_numCols); } else { int width = remainder > 0 ? remainder : blockWidth; if( !chol.decompose(T,(i*blockWidth)* T.columnCount() + i*blockWidth,width) ) return null; } } // zero the top right corner. for( int i = 0; i < n; i++ ) { for( int j = i+1; j < n; j++ ) { t[i*n+j] = 0.0; } } return new CholeskyResult(T); } /* * Private version of solveL_special that takes an argument, b_numCols which represents B.numCols * field in DenseMatrix64F in the ejml code */ private static void solveL_special( final double L[] , final Matrix b_src, final int indexSrc , final int indexDst , final Matrix B, int b_numCols ) { final double dataSrc[] = b_src.data; final double b[]= B.data; final int m = B.rowCount(); final int n = b_numCols; final int widthL = m; // for( int j = 0; j < n; j++ ) { // for( int i = 0; i < widthL; i++ ) { // double sum = dataSrc[indexSrc+i*b_src.numCols+j]; // for( int k=0; k




© 2015 - 2025 Weber Informatics LLC | Privacy Policy