All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.decompose.impl.eigen.SymmetricQREigenHelper Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.decompose.impl.eigen;

import java.util.Random;

import mikera.matrixx.Matrix;

/**
 * A helper class for the symmetric matrix implicit QR algorithm for eigenvalue decomposition.
 * Performs most of the basic operations needed to extract eigenvalues and eigenvectors.
 *
 * @author Peter Abeles
 */
public class SymmetricQREigenHelper {
    
    public static final double EPS = Math.pow(2,-52);

    // used in exceptional shifts
    protected Random rand = new Random(0x34671e);

    // how many steps has it taken
    protected int steps;

    // how many exception shifts has it performed
    protected int numExceptional;
    // the step number of the last exception shift
    protected int lastExceptional;

    // used to compute eigenvalues directly
    protected EigenvalueSmall eigenSmall = new EigenvalueSmall();

    // orthogonal matrix used in similar transform.  optional
    protected Matrix Q;

    // size of the matrix being processed
    protected int N;
    // diagonal elements in the matrix
    protected double diag[];
    // the off diagonal elements
    protected double off[];

    // which submatrix is being processed
    protected int x1;
    protected int x2;

    // where splits are performed
    protected int splits[];
    protected int numSplits;

    // current value of the bulge
    private double bulge;

    // local helper functions
    private double c,s,c2,s2,cs;

    public SymmetricQREigenHelper() {
        splits = new int[1];
    }

    public void printMatrix() {
        System.out.print("Off Diag[ ");
        for( int j = 0; j < N-1; j++ ) {
            System.out.printf("%5.2f ",off[j]);
        }
        System.out.println();
        System.out.print("    Diag[ ");
        for( int j = 0; j < N; j++ ) {
            System.out.printf("%5.2f ",diag[j]);
        }
        System.out.println();
    }

    public void setQ(Matrix q) {
        Q = q;
    }

    public void incrementSteps() {
        steps++;
    }

    /**
     * Sets up and declares internal data structures.
     *
     * @param diag Diagonal elements from tridiagonal matrix. Modified.
     * @param off Off diagonal elements from tridiagonal matrix. Modified.
     * @param numCols number of columns (and rows) in the matrix.
     */
    public void init( double diag[] ,
                      double off[],
                      int numCols ) {
        reset(numCols);

        this.diag = diag;
        this.off = off;
    }

    /**
     * Exchanges the internal array of the diagonal elements for the provided one.
     */
    public double[] swapDiag( double diag[] ) {
        double[] ret = this.diag;
        this.diag = diag;

        return ret;
    }

    /**
     * Exchanges the internal array of the off diagonal elements for the provided one.
     */
    public double[] swapOff( double off[] ) {
        double[] ret = this.off;
        this.off = off;

        return ret;
    }

    /**
     * Sets the size of the matrix being decomposed, declares new memory if needed,
     * and sets all helper functions to their initial value.
     */
    public void reset( int N ) {
        this.N = N;

        this.diag = null;
        this.off = null;

        if( splits.length < N ) {
            splits = new int[N];
        }

        numSplits = 0;

        x1 = 0;
        x2 = N-1;

        steps = numExceptional = lastExceptional = 0;

        this.Q = null;
    }

    public double[] copyDiag( double []ret ) {
        if( ret == null || ret.length < N ) {
            ret = new double[N];
        }

        System.arraycopy(diag,0,ret,0,N);

        return ret;
    }

    public double[] copyOff( double []ret ) {
        if( ret == null || ret.length < N-1 ) {
            ret = new double[N-1];
        }

        System.arraycopy(off,0,ret,0,N-1);

        return ret;
    }

    public double[] copyEigenvalues( double []ret ) {
        if( ret == null || ret.length < N ) {
            ret = new double[N];
        }

        System.arraycopy(diag,0,ret,0,N);

        return ret;
    }

    /**
     * Sets which submatrix is being processed.
     * @param x1 Lower bound, inclusive.
     * @param x2 Upper bound, inclusive.
     */
    public void setSubmatrix( int x1 , int x2 ) {
        this.x1 = x1;
        this.x2 = x2;
    }

    /**
     * Checks to see if the specified off diagonal element is zero using a relative metric.
     */
    protected boolean isZero( int index ) {
        double bottom = Math.abs(diag[index])+Math.abs(diag[index+1]);

        return( Math.abs(off[index]) <= bottom*EPS);
    }

    protected void performImplicitSingleStep( double lambda , boolean byAngle )
    {
        if( x2-x1 == 1  ) {
            createBulge2by2(x1,lambda,byAngle);
        } else {
            createBulge(x1,lambda,byAngle);

            for( int i = x1; i < x2-2 && bulge != 0.0; i++ ) {
                removeBulge(i);

            }
            if( bulge != 0.0 )
                removeBulgeEnd(x2-2);
        }
    }

    protected void updateQ( int m , int n , double c ,  double s )
    {
        int rowA = m*N;
        int rowB = n*N;

//        for( int i = 0; i < N; i++ ) {
//            double a = Q.data[rowA+i];
//            double b = Q.data[rowB+i];
//            Q.data[rowA+i] = c*a + s*b;
//            Q.data[rowB+i] = -s*a + c*b;
//        }
        int endA = rowA + N;
        while( rowA < endA ) {
            double a = Q.data[rowA];
            double b = Q.data[rowB];
            Q.data[rowA++] = c*a + s*b;
            Q.data[rowB++] = -s*a + c*b;
        }
    }

    /**
     * Performs a similar transform on A-pI
     */
    protected void createBulge( int x1 , double p , boolean byAngle ) {
        double a11 = diag[x1];
        double a22 = diag[x1+1];
        double a12 = off[x1];
        double a23 = off[x1+1];

        if( byAngle ) {
            c = Math.cos(p);
            s = Math.sin(p);

            c2 = c*c;
            s2 = s*s;
            cs = c*s;
        } else {
            computeRotation(a11-p, a12);
        }

        // multiply the rotator on the top left.
        diag[x1]   = c2*a11 + 2.0*cs*a12 + s2*a22;
        diag[x1+1] = c2*a22 - 2.0*cs*a12 + s2*a11;
        off[x1]    = a12*(c2-s2) + cs*(a22 - a11);
        off[x1+1]  = c*a23;
        bulge = s*a23;

        if( Q != null )
            updateQ(x1,x1+1,c,s);
    }

    protected void createBulge2by2( int x1 , double p , boolean byAngle ) {
        double a11 = diag[x1];
        double a22 = diag[x1+1];
        double a12 = off[x1];

        if( byAngle ) {
            c = Math.cos(p);
            s = Math.sin(p);

            c2 = c*c;
            s2 = s*s;
            cs = c*s;
        } else {
            computeRotation(a11-p, a12);
        }

        // multiply the rotator on the top left.
        diag[x1]   = c2*a11 + 2.0*cs*a12 + s2*a22;
        diag[x1+1] = c2*a22 - 2.0*cs*a12 + s2*a11;
        off[x1]    = a12*(c2-s2) + cs*(a22 - a11);

        if( Q != null )
            updateQ(x1,x1+1,c,s);
    }

    /**
     * Computes the rotation and stores it in (c,s)
     */
    private void computeRotation(double run, double rise) {
//        double alpha = Math.sqrt(run*run + rise*rise);
//        c = run/alpha;
//        s = rise/alpha;

        if( Math.abs(rise) > Math.abs(run)) {
            double k = run/rise;

            double bottom = 1.0 + k*k;
            double bottom_sq = Math.sqrt(bottom);

            s2 = 1.0/bottom;
            c2 = k*k/bottom;
            cs = k/bottom;
            s = 1.0/bottom_sq;
            c = k/bottom_sq;
        } else {
            double t = rise/run;

            double bottom = 1.0 + t*t;
            double bottom_sq = Math.sqrt(bottom);

            c2 = 1.0/bottom;
            s2 = t*t/bottom;
            cs = t/bottom;
            c = 1.0/bottom_sq;
            s = t/bottom_sq;
        }
    }

    protected void removeBulge( int x1 ) {
        double a22 = diag[x1+1];
        double a33 = diag[x1+2];
        double a12 = off[x1];
        double a23 = off[x1+1];
        double a34 = off[x1+2];

        computeRotation(a12, bulge);

        // multiply the rotator on the top left.
        diag[x1+1] = c2*a22 + 2.0*cs*a23 + s2*a33;
        diag[x1+2] = c2*a33 - 2.0*cs*a23 + s2*a22;
        off[x1] = c*a12 + s*bulge;
        off[x1+1] = a23*(c2-s2) + cs*(a33 - a22);
        off[x1+2] = c*a34;
        bulge = s*a34;

        if( Q != null )
            updateQ(x1+1,x1+2,c,s);
    }

    /**
     * Rotator to remove the bulge
     */
    protected void removeBulgeEnd( int x1 ) {
        double a22 = diag[x1+1];
        double a12 = off[x1];
        double a23 = off[x1+1];
        double a33 = diag[x1+2];

        computeRotation(a12, bulge);

        // multiply the rotator on the top left.
        diag[x1+1] = c2*a22 + 2.0*cs*a23 + s2*a33;
        diag[x1+2] = c2*a33 - 2.0*cs*a23 + s2*a22;
        off[x1] = c*a12 + s*bulge;
        off[x1+1] = a23*(c2-s2) + cs*(a33 - a22);

        if( Q != null )
            updateQ(x1+1,x1+2,c,s);
    }

    /**
     * Computes the eigenvalue of the 2 by 2 matrix.
     */
    protected void eigenvalue2by2( int x1 ) {
        double a = diag[x1];
        double b = off[x1];
        double c = diag[x1+1];

        // normalize to reduce overflow
        double absA = Math.abs(a);
        double absB = Math.abs(b);
        double absC = Math.abs(c);

        double scale = absA > absB ? absA : absB;
        if( absC > scale ) scale = absC;

        // see if it is a pathological case.  the diagonal must already be zero
        // and the eigenvalues are all zero.  so just return
        if( scale == 0 ) {
            off[x1] = 0;
            diag[x1] = 0;
            diag[x1+1] = 0;
            return;
        }

        a /= scale;
        b /= scale;
        c /= scale;

        eigenSmall.symm2x2_fast(a,b,c);

        off[x1] = 0;
        diag[x1] = scale*eigenSmall.value0.x;
        diag[x1+1] = scale*eigenSmall.value1.x;
    }

    /**
     * Perform a shift in a random direction that is of the same magnitude as the elements in the matrix.
     */
    public void exceptionalShift() {
        // rotating by a random angle handles at least one case using a random lambda
        // does not handle well:
        // - two identical eigenvalues are next to each other and a very small diagonal element
        numExceptional++;
        double mag = 0.05*numExceptional;
        if( mag > 1.0 ) mag = 1.0;

        double theta = 2.0*(rand.nextDouble()-0.5)*mag;
        performImplicitSingleStep(theta,true);

        lastExceptional = steps;
    }

    /**
     * Tells it to process the submatrix at the next split.  Should be called after the
     * current submatrix has been processed.
     */
    public boolean nextSplit() {
        if( numSplits == 0 )
            return false;
        x2 = splits[--numSplits];
        if( numSplits > 0 )
            x1 = splits[numSplits-1]+1;
        else
            x1 = 0;

        return true;
    }

    public double computeShift() {
        if( x2-x1 >= 1 )
            return computeWilkinsonShift();
        else
            return diag[x2];
    }

    public double computeWilkinsonShift() {
        double a = diag[x2-1];
        double b = off[x2-1];
        double c = diag[x2];

        // normalize to reduce overflow
        double absA = Math.abs(a);
        double absB = Math.abs(b);
        double absC = Math.abs(c);

        double scale = absA > absB ? absA : absB;
        if( absC > scale ) scale = absC;

        if( scale == 0 ) {
            throw new RuntimeException("this should never happen");
        }

        a /= scale;
        b /= scale;
        c /= scale;

        // TODO see 385

        eigenSmall.symm2x2_fast(a,b,c);

        // return the eigenvalue closest to c
        double diff0 = Math.abs(eigenSmall.value0.x-c);
        double diff1 = Math.abs(eigenSmall.value1.x-c);

        if( diff0 < diff1 )
            return scale*eigenSmall.value0.x;
        else
            return scale*eigenSmall.value1.x;
    }

    public int getMatrixSize() {
        return N;
    }

    public void resetSteps() {
        steps = 0;
        lastExceptional = 0;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy