mikera.matrixx.decompose.impl.qr.HouseholderColQR Maven / Gradle / Ivy
Show all versions of vectorz Show documentation
/*
* Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package mikera.matrixx.decompose.impl.qr;
import mikera.matrixx.AMatrix;
import mikera.matrixx.Matrix;
/**
*
* Householder QR decomposition is rich in operations along the columns of the matrix. This can be
* taken advantage of by solving for the Q matrix in a column major format to reduce the number
* of CPU cache misses and the number of copies that are performed.
*
*
* @author Peter Abeles
*/
public class HouseholderColQR implements QRDecomposition {
/**
* Where the Q and R matrices are stored. R is stored in the
* upper triangular portion and Q on the lower bit. Lower columns
* are where u is stored. Q_k = (I - gamma_k*u_k*u_k^T).
*/
protected double dataQR[][]; // [ column][ row ]
// used internally to store temporary data
protected double v[];
// dimension of the decomposed matrices
protected int numCols; // this is 'n'
protected int numRows; // this is 'm'
protected int minLength;
// the computed gamma for Q_k matrix
protected double gammas[];
// local variables
protected double gamma;
protected double tau;
// did it encounter an error?
protected boolean error;
private boolean compact;
private AMatrix Q;
private AMatrix R;
public HouseholderColQR(boolean compact) {
this.compact = compact;
}
/**
* Returns the combined QR matrix in a 2D array format that is column major.
*
* @return The QR matrix in a 2D matrix column major format. [ column ][ row ]
*/
public double[][] getQR() {
return dataQR;
}
/**
* @return The Q matrix from the decomposition.
*/
public AMatrix getQ() {
if (Q == null) {
Q = computeQ();
}
return Q;
}
/**
* @return The R matrix from the decomposition.
*/
public AMatrix getR() {
if (R == null) {
R = computeR();
}
return R;
}
/**
* Computes Q.
*/
protected AMatrix computeQ() {
Matrix Q = Matrix.createIdentity(numRows);
for( int j = minLength-1; j >= 0; j-- ) {
double u[] = dataQR[j];
double vv = u[j];
u[j] = 1;
QRHelperFunctions.rank1UpdateMultR(Q,u,gammas[j],j,j,numRows,v);
u[j] = vv;
}
return Q;
}
/**
* Computes R.
*/
protected AMatrix computeR() {
Matrix R;
if( compact ) {
R = Matrix.create(minLength,numCols);
} else {
R = Matrix.create(numRows,numCols);
}
for( int j = 0; j < numCols; j++ ) {
double colR[] = dataQR[j];
int l = Math.min(j,numRows-1);
for( int i = 0; i <= l; i++ ) {
double val = colR[i];
R.set(i,j,val);
}
}
return R;
}
/**
*
* To decompose the matrix 'A' it must have full rank. 'A' is a 'm' by 'n' matrix.
* It requires about 2n*m2-2m2/3 flops.
*
*
*
* The matrix provided here can be of different
* dimension than the one specified in the constructor. It just has to be smaller than or equal
* to it.
*
*/
@Override
public QRResult decompose( AMatrix A ) {
this.numCols = A.columnCount();
this.numRows = A.rowCount();
minLength = Math.min(numCols,numRows);
int maxLength = Math.max(numCols,numRows);
dataQR = new double[ numCols ][ numRows ];
v = new double[ maxLength ];
gammas = new double[ minLength ];
convertToColumnMajor(A);
error = false;
for( int j = 0; j < minLength; j++ ) {
householder(j);
updateA(j);
}
// if (error)
// return null;
// else
return new QRResult(getQ(), getR());
}
/**
* Converts the standard row-major matrix into a column-major vector
* that is advantageous for this problem.
*
* @param A original matrix that is to be decomposed.
*/
protected void convertToColumnMajor(AMatrix A) {
double[] data = A.asDoubleArray();
for( int x = 0; x < numCols; x++ ) {
double colQ[] = dataQR[x];
for( int y = 0; y < numRows; y++ ) {
colQ[y] = data[y*numCols+x];
}
}
}
/**
*
* Computes the householder vector "u" for the first column of submatrix j. Note this is
* a specialized householder for this problem. There is some protection against
* overfloaw and underflow.
*
*
* Q = I - γuuT
*
*
* This function finds the values of 'u' and 'γ'.
*
*
* @param j Which submatrix to work off of.
*/
protected void householder( int j )
{
final double u[] = dataQR[j];
// find the largest value in this column
// this is used to normalize the column and mitigate overflow/underflow
final double max = QRHelperFunctions.findMax(u,j,numRows-j);
if( max == 0.0 ) {
gamma = 0;
error = true;
} else {
// computes tau and normalizes u by max
tau = QRHelperFunctions.computeTauAndDivide(j, numRows , u, max);
// divide u by u_0
double u_0 = u[j] + tau;
QRHelperFunctions.divideElements(j+1,numRows , u, u_0 );
gamma = u_0/tau;
tau *= max;
u[j] = -tau;
}
gammas[j] = gamma;
}
/**
*
* Takes the results from the householder computation and updates the 'A' matrix.
*
* A = (I - γ*u*uT)A
*
*
* @param w The submatrix.
*/
protected void updateA( int w )
{
final double u[] = dataQR[w];
for( int j = w+1; j < numCols; j++ ) {
final double colQ[] = dataQR[j];
double val = colQ[w];
for( int k = w+1; k < numRows; k++ ) {
val += u[k]*colQ[k];
}
val *= gamma;
colQ[w] -= val;
for( int i = w+1; i < numRows; i++ ) {
colQ[i] -= u[i]*val;
}
}
}
public double[] getGammas() {
return gammas;
}
}