All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.decompose.impl.hessenberg.HessenbergSimilarDecomposition Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.decompose.impl.hessenberg;

import mikera.matrixx.AMatrix;
import mikera.matrixx.Matrix;
import mikera.matrixx.decompose.impl.qr.QRHelperFunctions;


/**
 * 

* Finds the decomposition of a matrix in the form of:
*
* A = QHQT
*
* where A is an m by m matrix, Q is an orthogonal matrix, and H is an upper Hessenberg matrix. *

* *

* A matrix is upper Hessenberg if aij = 0 for all i > j+1. *

* *

* This decomposition is primarily used as a step for computing the eigenvalue decomposition of a matrix. * The basic algorithm comes from David S. Watkins, "Fundamentals of MatrixComputations" Second Edition. *

*/ // TODO create a column based one similar to what was done for QR decomposition? public class HessenbergSimilarDecomposition { // A combined matrix that stores te upper Hessenberg matrix and the orthogonal matrix. private Matrix QH; // number of rows and columns of the matrix being decompose private int N; // the first element in the orthogonal vectors private double gammas[]; // temporary storage private double b[]; private double u[]; // a constructor for the static decompose method to use private HessenbergSimilarDecomposition() {} /** * Computes the decomposition of the provided matrix. If no errors are detected then true is returned, * false otherwise. * @param A The matrix that is being decomposed. Not modified. * @return If it detects any errors or not. */ public static HessenbergResult decompose( AMatrix A ) { HessenbergSimilarDecomposition alg = new HessenbergSimilarDecomposition(); return alg._decompose(A); } /** * The raw QH matrix that is stored internally. * * @return QH matrix. */ public AMatrix getQH() { return QH; } /** * An upper Hessenberg matrix from the decompostion. * * @return The extracted H matrix. */ private AMatrix getH() { Matrix H = Matrix.create(N,N); // copy the first row System.arraycopy(QH.data, 0, H.data, 0, N); for( int i = 1; i < N; i++ ) { for( int j = i-1; j < N; j++ ) { H.set(i,j, QH.get(i,j)); } } return H; } /** * An orthogonal matrix that has the following property: H = QTAQ * * @return The extracted Q matrix. */ private AMatrix getQ() { Matrix Q = Matrix.createIdentity(N); for( int j = N-2; j >= 0; j-- ) { u[j+1] = 1; for( int i = j+2; i < N; i++ ) { u[i] = QH.get(i,j); } QRHelperFunctions.rank1UpdateMultR(Q,u,gammas[j],j+1,j+1,N,b); } return Q; } /** * Internal function for computing the decomposition. * @param A */ private HessenbergResult _decompose(AMatrix A) { if( A.rowCount() != A.columnCount() ) throw new IllegalArgumentException("A must be square."); QH = A.copy().toMatrix(); N = A.columnCount(); b = new double[ N ]; gammas = new double[ N ]; u = new double[ N ]; double h[] = QH.data; for( int k = 0; k < N-2; k++ ) { // find the largest value in this column // this is used to normalize the column and mitigate overflow/underflow double max = 0; for( int i = k+1; i < N; i++ ) { // copy the householder vector to vector outside of the matrix to reduce caching issues // big improvement on larger matrices and a relatively small performance hit on small matrices. double val = u[i] = h[i*N+k]; val = Math.abs(val); if( val > max ) max = val; } if( max > 0 ) { // -------- set up the reflector Q_k double tau = 0; // normalize to reduce overflow/underflow // and compute tau for the reflector for( int i = k+1; i < N; i++ ) { double val = u[i] /= max; tau += val*val; } tau = Math.sqrt(tau); if( u[k+1] < 0 ) tau = -tau; // write the reflector into the lower left column of the matrix double nu = u[k+1] + tau; u[k+1] = 1.0; for( int i = k+2; i < N; i++ ) { h[i*N+k] = u[i] /= nu; } double gamma = nu/tau; gammas[k] = gamma; // ---------- multiply on the left by Q_k QRHelperFunctions.rank1UpdateMultR(QH,u,gamma,k+1,k+1,N,b); // ---------- multiply on the right by Q_k QRHelperFunctions.rank1UpdateMultL(QH,u,gamma,0,k+1,N); // since the first element in the householder vector is known to be 1 // store the full upper hessenberg h[(k+1)*N+k] = -tau*max; } else { gammas[k] = 0; } } return new HessenbergResult(getH(), getQ()); } public double[] getGammas() { return gammas; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy