All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.decompose.impl.qr.HouseholderQR Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.decompose.impl.qr;

import mikera.matrixx.AMatrix;
import mikera.matrixx.Matrix;

/**
 * 

* This variation of QR decomposition uses reflections to compute the Q matrix. * Each reflection uses a householder operations, hence its name. To provide a meaningful solution * the original matrix must have full rank. This is intended for processing of small to medium matrices. *

*

* Both Q and R are stored in the same m by n matrix. Q is not stored directly, instead the u from * Qk=(I-γ*u*uT) is stored. Decomposition requires about 2n*m2-2m2/3 flops. *

* *

* See the QR reflections algorithm described in:
* David S. Watkins, "Fundamentals of Matrix Computations" 2nd Edition, 2002 *

* *

* For the most part this is a straight forward implementation. To improve performance on large matrices a column is written to an array and the order * of some of the loops has been changed. This will degrade performance noticeably on small matrices. Since * it is unlikely that the QR decomposition would be a bottle neck when small matrices are involved only * one implementation is provided. *

* * @author Peter Abeles */ public class HouseholderQR implements QRDecomposition { /** * Where the Q and R matrices are stored. R is stored in the * upper triangular portion and Q on the lower bit. Lower columns * are where u is stored. Q_k = (I - gamma_k*u_k*u_k^T). */ protected Matrix QR; // used internally to store temporary data protected double u[],v[]; // dimension of the decomposed matrices protected int numCols; // this is 'n' protected int numRows; // this is 'm' protected int minLength; protected double dataQR[]; // the computed gamma for Q_k matrix protected double gammas[]; // local variables protected double gamma; protected double tau; // did it encounter an error? protected boolean error; private boolean compact; private AMatrix Q; private AMatrix R; public HouseholderQR(boolean compact) { this.compact = compact; } /** * Returns a single matrix which contains the combined values of Q and R. This * is possible since Q is symmetric and R is upper triangular. * * @return The combined Q R matrix. */ public AMatrix getQR() { return QR; } /** * @return The Q matrix from the decomposition. */ public AMatrix getQ() { if (Q == null) { Q = computeQ(); } return Q; } /** * @return The R matrix from the decomposition. */ public AMatrix getR() { if (R == null) { R = computeR(); } return R; } /** * Computes the Q matrix from the information stored in the QR matrix. This * operation requires about 4(m2n-mn2+n3/3) flops. */ protected AMatrix computeQ() { Matrix Q = Matrix.createIdentity(numRows); for( int j = minLength-1; j >= 0; j-- ) { u[j] = 1; for( int i = j+1; i < numRows; i++ ) { u[i] = QR.get(i,j); } QRHelperFunctions.rank1UpdateMultR(Q,u,gammas[j],j,j,numRows,v); } return Q; } /** * Returns an upper triangular matrix which is the R in the QR decomposition. */ protected AMatrix computeR() { Matrix R; if( compact ) { R = Matrix.create(minLength,numCols); } else { R = Matrix.create(numRows,numCols); } for( int i = 0; i < minLength; i++ ) { for( int j = i; j < numCols; j++ ) { double val = QR.get(i,j); R.set(i,j,val); } } return R; } /** *

* In order to decompose the matrix 'A' it must have full rank. 'A' is a 'm' by 'n' matrix. * It requires about 2n*m2-2m2/3 flops. *

* *

* The matrix provided here can be of different * dimension than the one specified in the constructor. It just has to be smaller than or equal * to it. *

*/ @Override public QRResult decompose( AMatrix A ) { error = false; this.numCols = A.columnCount(); this.numRows = A.rowCount(); minLength = Math.min(numRows,numCols); int maxLength = Math.max(numRows,numCols); QR = Matrix.create(A); u = new double[ maxLength ]; v = new double[ maxLength ]; dataQR = QR.data; gammas = new double[ minLength ]; for( int j = 0; j < minLength; j++ ) { householder(j); updateA(j); } // if (error) return null; // TODO: figure out how to handle return new QRResult(getQ(), getR()); } /** *

* Computes the householder vector "u" for the first column of submatrix j. Note this is * a specialised householder for this problem. There is some protection against * overflow and underflow. *

*

* Q = I - γuuT *

*

* This function finds the values of 'u' and 'γ'. *

* * @param j Which submatrix to work off of. */ protected void householder( int j ) { // find the element with the largest absolute value in the column and make a copy int index = j+j*numCols; double max = 0; for( int i = j; i < numRows; i++ ) { double d = u[i] = dataQR[index]; // absolute value of d if( d < 0 ) d = -d; if( max < d ) { max = d; } index += numCols; } if( max == 0.0 ) { gamma = 0; error = true; } else { // compute the norm2 of the matrix, with each element // normalized by the max value to avoid overflow problems tau = 0; for( int i = j; i < numRows; i++ ) { u[i] /= max; double d = u[i]; tau += d*d; } tau = Math.sqrt(tau); if( u[j] < 0 ) tau = -tau; double u_0 = u[j] + tau; gamma = u_0/tau; for( int i = j+1; i < numRows; i++ ) { u[i] /= u_0; } u[j] = 1; tau *= max; } gammas[j] = gamma; } /** *

* Takes the results from the householder computation and updates the 'A' matrix.
*
* A = (I - γ*u*uT)A *

* * @param w The submatrix. */ protected void updateA( int w ) { // much of the code below is equivalent to the rank1Update function // however, since τ has already been computed there is no need to // recompute it, saving a few multiplication operations // for( int i = w+1; i < numCols; i++ ) { // double val = 0; // // for( int k = w; k < numRows; k++ ) { // val += u[k]*dataQR[k*numCols +i]; // } // v[i] = gamma*val; // } // This is functionally the same as the above code but the order has been changed // to avoid jumping the cpu cache for( int i = w+1; i < numCols; i++ ) { v[i] = u[w]*dataQR[w*numCols +i]; } for( int k = w+1; k < numRows; k++ ) { int indexQR = k*numCols+w+1; for( int i = w+1; i < numCols; i++ ) { // v[i] += u[k]*dataQR[k*numCols +i]; v[i] += u[k]*dataQR[indexQR++]; } } for( int i = w+1; i < numCols; i++ ) { v[i] *= gamma; } // end of reordered code for( int i = w; i < numRows; i++ ) { double valU = u[i]; int indexQR = i*numCols+w+1; for( int j = w+1; j < numCols; j++ ) { // dataQR[i*numCols+j] -= valU*v[j]; dataQR[indexQR++] -= valU*v[j]; } } if( w < numCols ) { dataQR[w+w*numCols] = -tau; } // save the Q matrix in the lower portion of QR for( int i = w+1; i < numRows; i++ ) { dataQR[w+i*numCols] = u[i]; } } public double[] getGammas() { return gammas; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy