All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.decompose.impl.svd.SvdImplicitQrAlgorithm Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.decompose.impl.svd;

import java.util.Random;

import mikera.matrixx.AMatrix;
import mikera.matrixx.Matrix;


/**
 * 

* Computes the QR decomposition of a bidiagonal matrix. Internally this matrix is stored as * two arrays. Shifts can either be provided to it or it can generate the shifts on its own. * It optionally computes the U and V matrices. This comparability allows it to be used to * compute singular values and associated matrices efficiently.
*
* A = U*S*VT
* where A is the original m by n matrix. *

* *

* Based off of the outline provided in:
*
* David S. Watkins, "Fundamentals of Matrix Computations," Second Edition. Page 404-411 *

* *

* Note: To watch it process the matrix step by step uncomment commented out code. *

* * @author Peter Abeles */ public class SvdImplicitQrAlgorithm { // Taken from UtilEJML public static final double EPS = Math.pow(2,-52); // used in exceptional shifts protected Random rand = new Random(0x34671e); // U and V matrices in singular value decomposition. Stored in the transpose // to reduce cache jumps protected Matrix Ut; protected Matrix Vt; // number of times it has performed an implicit step, the most costly part of the // algorithm protected int totalSteps; // max value in original matrix. used to test for zeros protected double maxValue; // matrix's size protected int N; // used to compute eigenvalues directly protected EigenvalueSmall eigenSmall = new EigenvalueSmall(); // how many exception shifts has it performed protected int numExceptional; // the step number of the last exception shift protected int nextExceptional; // diagonal elements in the matrix protected double diag[]; // the off diagonal elements protected double off[]; // value of the bulge double bulge; // the submatrix its working on protected int x1; protected int x2; // how many cycles has it run through looking for the current singular value int steps; // where splits are performed protected int splits[]; protected int numSplits; // After this many iterations it will perform an exceptional private int exceptionalThresh = 15; private int maxIterations = exceptionalThresh*100; // should the steps use a sequence of predefined lambdas? boolean followScript; // --------- variables for scripted step // if following a sequence of steps, this is the point at which it decides its // going no where and needs to use a different step private static final int giveUpOnKnown = 10; private double values[]; //can it compute singularvalues directly private boolean fastValues = false; // if not in scripted mode is it looking for new zeros first? private boolean findingZeros; double c,s; // for debugging // SimpleMatrix B; public SvdImplicitQrAlgorithm( boolean fastValues ) { this.fastValues = fastValues; } public SvdImplicitQrAlgorithm() { } public AMatrix getUt() { return Ut; } public void setUt(AMatrix ut) { if (ut == null) { Ut = null; } else { Ut = ut.toMatrix(); } } public AMatrix getVt() { return Vt; } public void setVt(AMatrix vt) { if (vt == null) { Vt = null; } else { Vt = vt.toMatrix(); } } /** * */ public void setMatrix( int numRows , int numCols, double diag[], double off[] ) { initParam(numRows,numCols); this.diag = diag; this.off = off; // Find largest value in diag U off maxValue = Math.abs(diag[0]); for( int i = 1; i < N; i++ ) { double a = Math.abs(diag[i]); double b = Math.abs(off[i-1]); if( a > maxValue ) { maxValue = Math.abs(a); } if( b > maxValue ) { maxValue = Math.abs(b); } } } public double[] swapDiag( double diag[] ) { double[] ret = this.diag; this.diag = diag; return ret; } public double[] swapOff( double off[] ) { double[] ret = this.off; this.off = off; return ret; } public void setMaxValue(double maxValue) { this.maxValue = maxValue; } public void initParam( int M , int N ) { if( N > M ) throw new RuntimeException("Must be a square or tall matrix"); this.N = N; if( splits == null || splits.length < N ) { splits = new int[N]; } x1 = 0; x2 = this.N-1; steps = 0; totalSteps = 0; numSplits = 0; numExceptional = 0; nextExceptional = exceptionalThresh; } public boolean process() { this.followScript = false; findingZeros = true; return _process(); } /** * Perform a sequence of steps based off of the singular values provided. * * @param values * @return */ public boolean process(double values[] ) { this.followScript = true; this.values = values; this.findingZeros = false; return _process(); } /** * * @return true if successful, false if number of iterations exceeded */ public boolean _process() { // it is a zero matrix if( maxValue == 0 ) return true; while( x2 >= 0 ) { // if it has cycled too many times give up if( steps > maxIterations ) { return false; } if( x1 == x2 ) { // System.out.println("steps = "+steps+" script = "+followScript+" at "+x1); // System.out.println("Split"); // see if it is done processing this submatrix resetSteps(); if( !nextSplit() ) break; } else if( fastValues && x2-x1 == 1 ) { // There are analytical solutions to this case. Just compute them directly. resetSteps(); eigenBB_2x2(x1); setSubmatrix(x2,x2); } else if( steps >= nextExceptional ){ exceptionShift(); } else { // perform a step if (!checkForAndHandleZeros()) { if( followScript ) { performScriptedStep(); } else { performDynamicStep(); } } } // printMatrix(); } return true; } /** * Here the lambda in the implicit step is determined dynamically. At first * it selects zeros to quickly reveal singular values that are zero or close to zero. * Then it computes it using a Wilkinson shift. */ private void performDynamicStep() { // initially look for singular values of zero if( findingZeros ) { if( steps > 6 ) { findingZeros = false; } else { double scale = computeBulgeScale(); performImplicitSingleStep(scale,0,false); } } else { // For very large and very small numbers the only way to prevent overflow/underflow // is to have a common scale between the wilkinson shift and the implicit single step // What happens if you don't is that when the wilkinson shift returns the value it // computed it multiplies it by the scale twice, which will cause an overflow double scale = computeBulgeScale(); // use the wilkinson shift to perform a step double lambda = selectWilkinsonShift(scale); performImplicitSingleStep(scale,lambda,false); } } /** * Shifts are performed based upon singular values computed previously. If it does not converge * using one of those singular values it uses a Wilkinson shift instead. */ private void performScriptedStep() { double scale = computeBulgeScale(); if( steps > giveUpOnKnown ) { // give up on the script followScript = false; } else { // use previous singular value to step double s = values[x2]/scale; performImplicitSingleStep(scale,s*s,false); } } public void incrementSteps() { steps++; totalSteps++; } public boolean isOffZero(int i) { double bottom = Math.abs(diag[i])+Math.abs(diag[i+1]); return Math.abs(off[i]) <= bottom* EPS; } public boolean isDiagonalZero(int i) { // return Math.abs(diag[i]) <= maxValue* UtilEjml.EPS; double bottom = Math.abs(diag[i+1])+Math.abs(off[i]); return Math.abs(diag[i]) <= bottom* EPS; } public void resetSteps() { steps = 0; nextExceptional = exceptionalThresh; numExceptional = 0; } /** * Tells it to process the submatrix at the next split. Should be called after the * current submatrix has been processed. */ public boolean nextSplit() { if( numSplits == 0 ) return false; x2 = splits[--numSplits]; if( numSplits > 0 ) x1 = splits[numSplits-1]+1; else x1 = 0; return true; } /** * Given the lambda value perform an implicit QR step on the matrix. * * B^T*B-lambda*I * * @param lambda Stepping factor. */ public void performImplicitSingleStep(double scale , double lambda , boolean byAngle) { createBulge(x1,lambda,scale,byAngle); for( int i = x1; i < x2-1 && bulge != 0.0; i++ ) { removeBulgeLeft(i,true); if( bulge == 0 ) break; removeBulgeRight(i); } if( bulge != 0 ) removeBulgeLeft(x2-1,false); incrementSteps(); } /** * Multiplied a transpose orthogonal matrix Q by the specified rotator. This is used * to update the U and V matrices. Updating the transpose of the matrix is faster * since it only modifies the rows. * * * @param Q Orthogonal matrix * @param m Coordinate of rotator. * @param n Coordinate of rotator. * @param c cosine of rotator. * @param s sine of rotator. */ protected void updateRotator( Matrix Q , int m, int n, double c, double s) { int rowA = m*Q.columnCount(); int rowB = n*Q.columnCount(); // for( int i = 0; i < Q.numCols; i++ ) { // double a = Q.get(rowA+i); // double b = Q.get(rowB+i); // Q.set( rowA+i, c*a + s*b); // Q.set( rowB+i, -s*a + c*b); // } // System.out.println("------ AFter Update Rotator "+m+" "+n); // Q.print(); // System.out.println(); int endA = rowA + Q.columnCount(); double[] data = Q.asDoubleArray(); for( ; rowA != endA; rowA++ , rowB++ ) { double a = data[rowA]; double b = data[rowB]; data[rowA] = c*a + s*b; data[rowB] = -s*a + c*b; } // for( ; rowA != endA; rowA++ , rowB++ ) { // double a = Q.get(rowA); // double b = Q.get(rowB); // Q.set(rowA, c*a + s*b); // Q.set(rowB, -s*a + c*b); // } } private double computeBulgeScale() { double b11 = diag[x1]; double b12 = off[x1]; return Math.max( Math.abs(b11) , Math.abs(b12)); // // double b22 = diag[x1+1]; // // double scale = Math.max( Math.abs(b11) , Math.abs(b12)); // // return Math.max(scale,Math.abs(b22)); } /** * Performs a similar transform on BTB-pI */ protected void createBulge( int x1 , double p , double scale , boolean byAngle ) { double b11 = diag[x1]; double b12 = off[x1]; double b22 = diag[x1+1]; if( byAngle ) { c = Math.cos(p); s = Math.sin(p); } else { // normalize to improve resistance to overflow/underflow double u1 = (b11/scale)*(b11/scale)-p; double u2 = (b12/scale)*(b11/scale); double gamma = Math.sqrt(u1*u1 + u2*u2); c = u1/gamma; s = u2/gamma; } // multiply the rotator on the top left. diag[x1] = b11*c + b12*s; off[x1] = b12*c - b11*s; diag[x1+1] = b22*c; bulge = b22*s; // SimpleMatrix Q = createQ(x1, c, s, false); // B=B.mult(Q); // // B.print(); // printMatrix(); // System.out.println(" bulge = "+bulge); if( Vt != null ) { updateRotator(Vt,x1,x1+1,c,s); // SimpleMatrix.wrap(Ut).mult(B).mult(SimpleMatrix.wrap(Vt).transpose()).print(); // printMatrix(); // System.out.println("bulge = "+bulge); // System.out.println(); } } /** * Computes a rotator that will set run to zero (?) */ protected void computeRotator( double rise , double run ) { // double gamma = Math.sqrt(rise*rise + run*run); // // c = rise/gamma; // s = run/gamma; // See page 384 of Fundamentals of Matrix Computations 2nd if( Math.abs(rise) < Math.abs(run)) { double k = rise/run; double bottom = Math.sqrt(1.0d+k*k); s = 1.0/bottom; c = k/bottom; } else { double t = run/rise; double bottom = Math.sqrt(1.0d + t*t); c = 1.0/bottom; s = t/bottom; } } protected void removeBulgeLeft( int x1 , boolean notLast ) { double b11 = diag[x1]; double b12 = off[x1]; double b22 = diag[x1+1]; computeRotator(b11,bulge); // apply rotator on the left diag[x1] = c*b11 + s*bulge; off[x1] = c*b12 + s*b22; diag[x1+1] = c*b22-s*b12; if( notLast ) { double b23 = off[x1+1]; bulge = s*b23; off[x1+1] = c*b23; } // SimpleMatrix Q = createQ(x1, c, s, true); // B=Q.mult(B); // // B.print(); // printMatrix(); // System.out.println(" bulge = "+bulge); if( Ut != null ) { updateRotator(Ut,x1,x1+1,c,s); // SimpleMatrix.wrap(Ut).mult(B).mult(SimpleMatrix.wrap(Vt).transpose()).print(); // printMatrix(); // System.out.println("bulge = "+bulge); // System.out.println(); } } protected void removeBulgeRight( int x1 ) { double b12 = off[x1]; double b22 = diag[x1+1]; double b23 = off[x1+1]; computeRotator(b12,bulge); // apply rotator on the right off[x1] = b12*c + bulge*s; diag[x1+1] = b22*c + b23*s; off[x1+1] = -b22*s + b23*c; double b33 = diag[x1+2]; diag[x1+2] = b33*c; bulge = b33*s; // SimpleMatrix Q = createQ(x1+1, c, s, false); // B=B.mult(Q); // // B.print(); // printMatrix(); // System.out.println(" bulge = "+bulge); if( Vt != null ) { updateRotator(Vt,x1+1,x1+2,c,s); // SimpleMatrix.wrap(Ut).mult(B).mult(SimpleMatrix.wrap(Vt).transpose()).print(); // printMatrix(); // System.out.println("bulge = "+bulge); // System.out.println(); } } public void setSubmatrix(int x1, int x2) { this.x1 = x1; this.x2 = x2; } /** * Selects the Wilkinson's shift for BTB. See page 410. It is guaranteed to converge * and converges fast in practice. * * @param scale Scale factor used to help prevent overflow/underflow * @return Shifting factor lambda/(scale*scale) */ public double selectWilkinsonShift( double scale ) { double a11,a22; if( x2-x1 > 1 ) { double d1 = diag[x2-1] / scale; double o1 = off[x2-2] / scale; double d2 = diag[x2] / scale; double o2 = off[x2-1] / scale; a11 = o1*o1 + d1*d1; a22 = o2*o2 + d2*d2; eigenSmall.symm2x2_fast(a11 , o2*d1 , a22); } else { double a = diag[x2-1]/scale; double b = off[x2-1]/scale; double c = diag[x2]/scale; a11 = a*a; a22 = b*b + c*c; eigenSmall.symm2x2_fast(a11, a*b , a22); } // return the eigenvalue closest to a22 double diff0 = Math.abs(eigenSmall.value0-a22); double diff1 = Math.abs(eigenSmall.value1-a22); return diff0 < diff1 ? eigenSmall.value0 : eigenSmall.value1; } /** * Computes the eigenvalue of the 2 by 2 matrix BTB */ protected void eigenBB_2x2( int x1 ) { double b11 = diag[x1]; double b12 = off[x1]; double b22 = diag[x1+1]; // normalize to reduce overflow double absA = Math.abs(b11); double absB = Math.abs(b12); double absC = Math.abs(b22); double scale = absA > absB ? absA : absB; if( absC > scale ) scale = absC; // see if it is a pathological case. the diagonal must already be zero // and the eigenvalues are all zero. so just return if( scale == 0 ) return; b11 /= scale; b12 /= scale; b22 /= scale; eigenSmall.symm2x2_fast(b11*b11, b11*b12 , b12*b12+b22*b22); off[x1] = 0; diag[x1] = scale*Math.sqrt(eigenSmall.value0); double sgn = Math.signum(eigenSmall.value1); diag[x1+1] = sgn*scale*Math.sqrt(Math.abs(eigenSmall.value1)); } /** * Checks to see if either the diagonal element or off diagonal element is zero. If one is * then it performs a split or pushes it off the matrix. * * @return True if there was a zero. */ protected boolean checkForAndHandleZeros() { // check for zeros along off diagonal for( int i = x2-1; i >= x1; i-- ) { if( isOffZero(i) ) { // System.out.println("steps at split = "+steps); resetSteps(); splits[numSplits++] = i; x1 = i+1; return true; } } // check for zeros along diagonal for( int i = x2-1; i >= x1; i-- ) { if( isDiagonalZero(i)) { // System.out.println("steps at split = "+steps); pushRight(i); resetSteps(); splits[numSplits++] = i; x1 = i+1; return true; } } return false; } /** * If there is a zero on the diagonal element, the off diagonal element needs pushed * off so that all the algorithms assumptions are two and so that it can split the matrix. */ private void pushRight( int row ) { if( isOffZero(row)) return; // B = createB(); // B.print(); rotatorPushRight(row); int end = N-2-row; for( int i = 0; i < end && bulge != 0; i++ ) { rotatorPushRight2(row,i+2); } // } } /** * Start pushing the element off to the right. */ private void rotatorPushRight( int m ) { double b11 = off[m]; double b21 = diag[m+1]; computeRotator(b21,-b11); // apply rotator on the right off[m] = 0; diag[m+1] = b21*c-b11*s; if( m+2 < N) { double b22 = off[m+1]; off[m+1] = b22*c; bulge = b22*s; } else { bulge = 0; } // SimpleMatrix Q = createQ(m,m+1, c, s, true); // B=Q.mult(B); // // B.print(); // printMatrix(); // System.out.println(" bulge = "+bulge); // System.out.println(); if( Ut != null ) { updateRotator(Ut,m,m+1,c,s); // SimpleMatrix.wrap(Ut).mult(B).mult(SimpleMatrix.wrap(Vt).transpose()).print(); // printMatrix(); // System.out.println("bulge = "+bulge); // System.out.println(); } } /** * Used to finish up pushing the bulge off the matrix. */ private void rotatorPushRight2( int m , int offset) { double b11 = bulge; double b12 = diag[m+offset]; computeRotator(b12,-b11); diag[m+offset] = b12*c-b11*s; if( m+offset




© 2015 - 2025 Weber Informatics LLC | Privacy Policy