All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mikera.matrixx.solve.impl.TriangularSolver Maven / Gradle / Ivy

Go to download

Fast double-precision vector and matrix maths library for Java, supporting N-dimensional numeric arrays.

There is a newer version: 0.67.0
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package mikera.matrixx.solve.impl;

/**
 * 

* This contains algorithms for solving systems of equations where T is a * non-singular triangular matrix:
*
* T*x = b
*
* where x and b are vectors, and T is an n by n matrix. T can either be a lower or upper triangular matrix.
*

*

* These functions are designed for use inside of other algorithms. To use them directly * is dangerous since no sanity checks are performed. *

* * @author Peter Abeles */ public class TriangularSolver { private TriangularSolver(){} /** *

* Inverts a square lower triangular matrix: L = L-1 *

* * * @param L * @param m */ public static void invertLower( double L[] , int m ) { for( int i = 0; i < m; i++ ) { double L_ii = L[ i*m + i ]; for( int j = 0; j < i; j++ ) { double val = 0; for( int k = j; k < i; k++ ) { val += L[ i*m + k] * L[ k*m + j ]; } L[ i*m + j ] = -val / L_ii; } L[ i*m + i ] = 1.0 / L_ii; } } public static void invertLower( double L[] , double L_inv[] , int m ) { for( int i = 0; i < m; i++ ) { double L_ii = L[ i*m + i ]; for( int j = 0; j < i; j++ ) { double val = 0; for( int k = j; k < i; k++ ) { val -= L[ i*m + k] * L_inv[ k*m + j ]; } L_inv[ i*m + j ] = val / L_ii; } L_inv[ i*m + i ] = 1.0 / L_ii; } } /** *

* Solves for non-singular lower triangular matrices using forward substitution. *
* b = L-1b
*
* where b is a vector, L is an n by n matrix.
*

* * @param L An n by n non-singular lower triangular matrix. Not modified. * @param b A vector of length n. Modified. * @param n The size of the matrices. */ public static void solveL( double L[] , double []b , int n ) { // for( int i = 0; i < n; i++ ) { // double sum = b[i]; // for( int k=0; k * This is a forward substitution solver for non-singular lower triangular matrices. *
* b = (LT)-1b
*
* where b is a vector, L is an n by n matrix.
*

*

* L is a lower triangular matrix, but it comes up with a solution as if it was * an upper triangular matrix that was computed by transposing L. *

* * @param L An n by n non-singular lower triangular matrix. Not modified. * @param b A vector of length n. Modified. * @param n The size of the matrices. */ public static void solveTranL( double L[] , double []b , int n ) { for( int i =n-1; i>=0; i-- ) { double sum = b[i]; for( int k = i+1; k * This is a forward substitution solver for non-singular upper triangular matrices. *
* b = U-1b
*
* where b is a vector, U is an n by n matrix.
*

* * @param U An n by n non-singular upper triangular matrix. Not modified. * @param b A vector of length n. Modified. * @param n The size of the matrices. */ public static void solveU( double U[] , double []b , int n ) { // for( int i =n-1; i>=0; i-- ) { // double sum = b[i]; // for( int j = i+1; j =0; i-- ) { double sum = b[i]; int indexU = i*n+i+1; for( int j = i+1; j =minRow; i-- ) { // double sum = b[i]; // for( int j = i+1; j =minRow; i-- ) { double sum = b[i]; int indexU = i*sideLength+i+1; for( int j = i+1; j * This is a forward substitution solver for non-singular upper triangular matrices which are * a sub-matrix inside a larger. The columns of 'b' are solved for individually *
* b = U-1b
*
* where b is a matrix, U is an n by n matrix.
*

* * @param U Matrix containing the upper triangle system * @param startU Index of the first element in U * @param strideU stride between rows * @param widthU How wide the square matrix is * @param b Matrix containing the solution to the system. Overwritten with the solution. * @param startB Index of the first element in B * @param strideB stride between rows * @param widthB How wide the matrix is. Length is the same as U's width */ public static void solveU( double []U , int startU , int strideU , int widthU , double []b , int startB , int strideB , int widthB ) { for( int colB = 0; colB < widthB; colB++ ) { for( int i =widthU-1; i>=0; i-- ) { double sum = b[startB + i*strideB + colB]; for( int j = i+1; j




© 2015 - 2025 Weber Informatics LLC | Privacy Policy