net.myrrix.online.eval.EstimatedStrengthEvaluator Maven / Gradle / Ivy
/*
* Copyright Myrrix Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package net.myrrix.online.eval;
import java.io.File;
import java.util.Map;
import com.google.common.base.Preconditions;
import com.google.common.collect.Multimap;
import org.apache.mahout.cf.taste.common.NoSuchItemException;
import org.apache.mahout.cf.taste.common.NoSuchUserException;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import net.myrrix.common.LangUtils;
import net.myrrix.common.MyrrixRecommender;
import net.myrrix.common.stats.DoubleWeightedMean;
import net.myrrix.online.RescorerProvider;
/**
* An alternate evaluation which computes the average "error" in estimated strength score (see
* {@link org.apache.mahout.cf.taste.recommender.Recommender#estimatePreference(long, long)}) for each test
* datum. It simply reports the average -- a weighted average, weighted by the test datum's value -- of the
* difference between 1.0 and the estimate. An estimate of 1.0 would be good, producing an error of 0.0.
* We allow the difference to be negative.
*
* This class can be run as a Java program; the single argument is a directory containing test data.
* The {@link EvaluationResult} is printed to standard out.
*
* @author Sean Owen
* @since 1.0
*/
public final class EstimatedStrengthEvaluator extends AbstractEvaluator {
private static final Logger log = LoggerFactory.getLogger(EstimatedStrengthEvaluator.class);
@Override
protected boolean isSplitTestByPrefValue() {
return false;
}
@Override
public EvaluationResult evaluate(MyrrixRecommender recommender,
RescorerProvider provider, // ignored
Multimap testData) throws TasteException {
DoubleWeightedMean score = new DoubleWeightedMean();
int count = 0;
for (Map.Entry entry : testData.entries()) {
long userID = entry.getKey();
RecommendedItem itemPref = entry.getValue();
try {
float estimate = recommender.estimatePreference(userID, itemPref.getItemID());
Preconditions.checkState(LangUtils.isFinite(estimate));
score.increment(1.0 - estimate, itemPref.getValue());
} catch (NoSuchItemException nsie) {
// continue
} catch (NoSuchUserException nsue) {
// continue
}
if (++count % 100000 == 0) {
log.info("Score: {}", score);
}
}
log.info("Score: {}", score);
return new EvaluationResultImpl(score.getResult());
}
public static void main(String[] args) throws Exception {
EstimatedStrengthEvaluator eval = new EstimatedStrengthEvaluator();
EvaluationResult result = eval.evaluate(new File(args[0]));
log.info(result.toString());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy