All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.myrrix.online.eval.EstimatedStrengthEvaluator Maven / Gradle / Ivy

/*
 * Copyright Myrrix Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package net.myrrix.online.eval;

import java.io.File;
import java.util.Map;

import com.google.common.base.Preconditions;
import com.google.common.collect.Multimap;
import org.apache.mahout.cf.taste.common.NoSuchItemException;
import org.apache.mahout.cf.taste.common.NoSuchUserException;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import net.myrrix.common.LangUtils;
import net.myrrix.common.MyrrixRecommender;
import net.myrrix.common.stats.DoubleWeightedMean;
import net.myrrix.online.RescorerProvider;

/**
 * 

An alternate evaluation which computes the average "error" in estimated strength score (see * {@link org.apache.mahout.cf.taste.recommender.Recommender#estimatePreference(long, long)}) for each test * datum. It simply reports the average -- a weighted average, weighted by the test datum's value -- of the * difference between 1.0 and the estimate. An estimate of 1.0 would be good, producing an error of 0.0. * We allow the difference to be negative.

* *

This class can be run as a Java program; the single argument is a directory containing test data. * The {@link EvaluationResult} is printed to standard out.

* * @author Sean Owen * @since 1.0 */ public final class EstimatedStrengthEvaluator extends AbstractEvaluator { private static final Logger log = LoggerFactory.getLogger(EstimatedStrengthEvaluator.class); @Override protected boolean isSplitTestByPrefValue() { return false; } @Override public EvaluationResult evaluate(MyrrixRecommender recommender, RescorerProvider provider, // ignored Multimap testData) throws TasteException { DoubleWeightedMean score = new DoubleWeightedMean(); int count = 0; for (Map.Entry entry : testData.entries()) { long userID = entry.getKey(); RecommendedItem itemPref = entry.getValue(); try { float estimate = recommender.estimatePreference(userID, itemPref.getItemID()); Preconditions.checkState(LangUtils.isFinite(estimate)); score.increment(1.0 - estimate, itemPref.getValue()); } catch (NoSuchItemException nsie) { // continue } catch (NoSuchUserException nsue) { // continue } if (++count % 100000 == 0) { log.info("Score: {}", score); } } log.info("Score: {}", score); return new EvaluationResultImpl(score.getResult()); } public static void main(String[] args) throws Exception { EstimatedStrengthEvaluator eval = new EstimatedStrengthEvaluator(); EvaluationResult result = eval.evaluate(new File(args[0])); log.info(result.toString()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy