All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.artemis.utils.ComparableTimSort Maven / Gradle / Ivy

/*
 * Copyright (C) 2008 The Android Open Source Project
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS"
 * BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
 * governing permissions and limitations under the License.
 */

package com.artemis.utils;

/** This is a near duplicate of {@link TimSort}, modified for use with arrays of objects that implement {@link Comparable}, instead
 * of using explicit comparators.
 * 
 * 

* If you are using an optimizing VM, you may find that ComparableTimSort offers no performance benefit over TimSort in * conjunction with a comparator that simply returns {@code ((Comparable)first).compareTo(Second)}. If this is the case, you are * better off deleting ComparableTimSort to eliminate the code duplication. (See Arrays.java for details.) */ class ComparableTimSort { /** This is the minimum sized sequence that will be merged. Shorter sequences will be lengthened by calling binarySort. If the * entire array is less than this length, no merges will be performed. * * This constant should be a power of two. It was 64 in Tim Peter's C implementation, but 32 was empirically determined to work * better in this implementation. In the unlikely event that you set this constant to be a number that's not a power of two, * you'll need to change the {@link #minRunLength} computation. * * If you decrease this constant, you must change the stackLen computation in the TimSort constructor, or you risk an * ArrayOutOfBounds exception. See listsort.txt for a discussion of the minimum stack length required as a function of the * length of the array being sorted and the minimum merge sequence length. */ private static final int MIN_MERGE = 32; /** The array being sorted. */ private Object[] a; /** When we get into galloping mode, we stay there until both runs win less often than MIN_GALLOP consecutive times. */ private static final int MIN_GALLOP = 7; /** This controls when we get *into* galloping mode. It is initialized to MIN_GALLOP. The mergeLo and mergeHi methods nudge it * higher for random data, and lower for highly structured data. */ private int minGallop = MIN_GALLOP; /** Maximum initial size of tmp array, which is used for merging. The array can grow to accommodate demand. * * Unlike Tim's original C version, we do not allocate this much storage when sorting smaller arrays. This change was required * for performance. */ private static final int INITIAL_TMP_STORAGE_LENGTH = 256; /** Temp storage for merges. */ private Object[] tmp; /** A stack of pending runs yet to be merged. Run i starts at address base[i] and extends for len[i] elements. It's always true * (so long as the indices are in bounds) that: * * runBase[i] + runLen[i] == runBase[i + 1] * * so we could cut the storage for this, but it's a minor amount, and keeping all the info explicit simplifies the code. */ private int stackSize = 0; // Number of pending runs on stack private final int[] runBase; private final int[] runLen; /** Asserts have been placed in if-statements for performace. To enable them, set this field to true and enable them in VM with * a command line flag. If you modify this class, please do test the asserts! */ private static final boolean DEBUG = false; ComparableTimSort () { tmp = new Object[INITIAL_TMP_STORAGE_LENGTH]; runBase = new int[40]; runLen = new int[40]; } public void doSort (Object[] a, int lo, int hi) { stackSize = 0; rangeCheck(a.length, lo, hi); int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi); binarySort(a, lo, hi, lo + initRunLen); return; } this.a = a; /** March over the array once, left to right, finding natural runs, extending short natural runs to minRun elements, and * merging runs to maintain stack invariant. */ int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen); runLen = force; } // Push run onto pending-run stack, and maybe merge pushRun(lo, runLen); mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort if (DEBUG) assert lo == hi; mergeForceCollapse(); if (DEBUG) assert stackSize == 1; } /** Creates a TimSort instance to maintain the state of an ongoing sort. * * @param a the array to be sorted */ private ComparableTimSort (Object[] a) { this.a = a; // Allocate temp storage (which may be increased later if necessary) int len = a.length; Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ? len >>> 1 : INITIAL_TMP_STORAGE_LENGTH]; tmp = newArray; /* * Allocate runs-to-be-merged stack (which cannot be expanded). The stack length requirements are described in listsort.txt. * The C version always uses the same stack length (85), but this was measured to be too expensive when sorting "mid-sized" * arrays (e.g., 100 elements) in Java. Therefore, we use smaller (but sufficiently large) stack lengths for smaller arrays. * The "magic numbers" in the computation below must be changed if MIN_MERGE is decreased. See the MIN_MERGE declaration * above for more information. */ int stackLen = (len < 120 ? 5 : len < 1542 ? 10 : len < 119151 ? 19 : 40); runBase = new int[stackLen]; runLen = new int[stackLen]; } /* * The next two methods (which are package private and static) constitute the entire API of this class. Each of these methods * obeys the contract of the public method with the same signature in java.util.Arrays. */ static void sort (Object[] a) { sort(a, 0, a.length); } static void sort (Object[] a, int lo, int hi) { rangeCheck(a.length, lo, hi); int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi); binarySort(a, lo, hi, lo + initRunLen); return; } /** March over the array once, left to right, finding natural runs, extending short natural runs to minRun elements, and * merging runs to maintain stack invariant. */ ComparableTimSort ts = new ComparableTimSort(a); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort if (DEBUG) assert lo == hi; ts.mergeForceCollapse(); if (DEBUG) assert ts.stackSize == 1; } /** Sorts the specified portion of the specified array using a binary insertion sort. This is the best method for sorting small * numbers of elements. It requires O(n log n) compares, but O(n^2) data movement (worst case). * * If the initial part of the specified range is already sorted, this method can take advantage of it: the method assumes that * the elements from index {@code lo}, inclusive, to {@code start}, exclusive are already sorted. * * @param a the array in which a range is to be sorted * @param lo the index of the first element in the range to be sorted * @param hi the index after the last element in the range to be sorted * @param start the index of the first element in the range that is not already known to be sorted (@code lo <= start <= hi} */ @SuppressWarnings({"fallthrough", "rawtypes"}) private static void binarySort (Object[] a, int lo, int hi, int start) { if (DEBUG) assert lo <= start && start <= hi; if (start == lo) start++; for (; start < hi; start++) { @SuppressWarnings("unchecked") Comparable pivot = (Comparable)a[start]; // Set left (and right) to the index where a[start] (pivot) belongs int left = lo; int right = start; if (DEBUG) assert left <= right; /* * Invariants: pivot >= all in [lo, left). pivot < all in [right, start). */ while (left < right) { int mid = (left + right) >>> 1; if (pivot.compareTo(a[mid]) < 0) right = mid; else left = mid + 1; } if (DEBUG) assert left == right; /* * The invariants still hold: pivot >= all in [lo, left) and pivot < all in [left, start), so pivot belongs at left. Note * that if there are elements equal to pivot, left points to the first slot after them -- that's why this sort is stable. * Slide elements over to make room to make room for pivot. */ int n = start - left; // The number of elements to move // Switch is just an optimization for arraycopy in default case switch (n) { case 2: a[left + 2] = a[left + 1]; case 1: a[left + 1] = a[left]; break; default: System.arraycopy(a, left, a, left + 1, n); } a[left] = pivot; } } /** Returns the length of the run beginning at the specified position in the specified array and reverses the run if it is * descending (ensuring that the run will always be ascending when the method returns). * * A run is the longest ascending sequence with: * * a[lo] <= a[lo + 1] <= a[lo + 2] <= ... * * or the longest descending sequence with: * * a[lo] > a[lo + 1] > a[lo + 2] > ... * * For its intended use in a stable mergesort, the strictness of the definition of "descending" is needed so that the call can * safely reverse a descending sequence without violating stability. * * @param a the array in which a run is to be counted and possibly reversed * @param lo index of the first element in the run * @param hi index after the last element that may be contained in the run. It is required that @code{lo < hi}. * @return the length of the run beginning at the specified position in the specified array */ @SuppressWarnings({"unchecked", "rawtypes"}) private static int countRunAndMakeAscending (Object[] a, int lo, int hi) { if (DEBUG) assert lo < hi; int runHi = lo + 1; if (runHi == hi) return 1; // Find end of run, and reverse range if descending if (((Comparable)a[runHi++]).compareTo(a[lo]) < 0) { // Descending while (runHi < hi && ((Comparable)a[runHi]).compareTo(a[runHi - 1]) < 0) runHi++; reverseRange(a, lo, runHi); } else { // Ascending while (runHi < hi && ((Comparable)a[runHi]).compareTo(a[runHi - 1]) >= 0) runHi++; } return runHi - lo; } /** Reverse the specified range of the specified array. * * @param a the array in which a range is to be reversed * @param lo the index of the first element in the range to be reversed * @param hi the index after the last element in the range to be reversed */ private static void reverseRange (Object[] a, int lo, int hi) { hi--; while (lo < hi) { Object t = a[lo]; a[lo++] = a[hi]; a[hi--] = t; } } /** Returns the minimum acceptable run length for an array of the specified length. Natural runs shorter than this will be * extended with {@link #binarySort}. * * Roughly speaking, the computation is: * * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff). Else if n is an exact power of 2, return * MIN_MERGE/2. Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k is close to, but strictly less than, an * exact power of 2. * * For the rationale, see listsort.txt. * * @param n the length of the array to be sorted * @return the length of the minimum run to be merged */ private static int minRunLength (int n) { if (DEBUG) assert n >= 0; int r = 0; // Becomes 1 if any 1 bits are shifted off while (n >= MIN_MERGE) { r |= (n & 1); n >>= 1; } return n + r; } /** Pushes the specified run onto the pending-run stack. * * @param runBase index of the first element in the run * @param runLen the number of elements in the run */ private void pushRun (int runBase, int runLen) { this.runBase[stackSize] = runBase; this.runLen[stackSize] = runLen; stackSize++; } /** Examines the stack of runs waiting to be merged and merges adjacent runs until the stack invariants are reestablished: * * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1] 2. runLen[i - 2] > runLen[i - 1] * * This method is called each time a new run is pushed onto the stack, so the invariants are guaranteed to hold for i < * stackSize upon entry to the method. */ private void mergeCollapse () { while (stackSize > 1) { int n = stackSize - 2; if (n > 0 && runLen[n - 1] <= runLen[n] + runLen[n + 1]) { if (runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } else if (runLen[n] <= runLen[n + 1]) { mergeAt(n); } else { break; // Invariant is established } } } /** Merges all runs on the stack until only one remains. This method is called once, to complete the sort. */ private void mergeForceCollapse () { while (stackSize > 1) { int n = stackSize - 2; if (n > 0 && runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } } /** Merges the two runs at stack indices i and i+1. Run i must be the penultimate or antepenultimate run on the stack. In other * words, i must be equal to stackSize-2 or stackSize-3. * * @param i stack index of the first of the two runs to merge */ @SuppressWarnings("unchecked") private void mergeAt (int i) { if (DEBUG) assert stackSize >= 2; if (DEBUG) assert i >= 0; if (DEBUG) assert i == stackSize - 2 || i == stackSize - 3; int base1 = runBase[i]; int len1 = runLen[i]; int base2 = runBase[i + 1]; int len2 = runLen[i + 1]; if (DEBUG) assert len1 > 0 && len2 > 0; if (DEBUG) assert base1 + len1 == base2; /* * Record the length of the combined runs; if i is the 3rd-last run now, also slide over the last run (which isn't involved * in this merge). The current run (i+1) goes away in any case. */ runLen[i] = len1 + len2; if (i == stackSize - 3) { runBase[i + 1] = runBase[i + 2]; runLen[i + 1] = runLen[i + 2]; } stackSize--; /* * Find where the first element of run2 goes in run1. Prior elements in run1 can be ignored (because they're already in * place). */ int k = gallopRight((Comparable)a[base2], a, base1, len1, 0); if (DEBUG) assert k >= 0; base1 += k; len1 -= k; if (len1 == 0) return; /* * Find where the last element of run1 goes in run2. Subsequent elements in run2 can be ignored (because they're already in * place). */ len2 = gallopLeft((Comparable)a[base1 + len1 - 1], a, base2, len2, len2 - 1); if (DEBUG) assert len2 >= 0; if (len2 == 0) return; // Merge remaining runs, using tmp array with min(len1, len2) elements if (len1 <= len2) mergeLo(base1, len1, base2, len2); else mergeHi(base1, len1, base2, len2); } /** Locates the position at which to insert the specified key into the specified sorted range; if the range contains an element * equal to key, returns the index of the leftmost equal element. * * @param key the key whose insertion point to search for * @param a the array in which to search * @param base the index of the first element in the range * @param len the length of the range; must be > 0 * @param hint the index at which to begin the search, 0 <= hint < n. The closer hint is to the result, the faster this method * will run. * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k], pretending that a[b - 1] is minus infinity and a[b * + n] is infinity. In other words, key belongs at index b + k; or in other words, the first k elements of a should * precede key, and the last n - k should follow it. */ private static int gallopLeft (Comparable key, Object[] a, int base, int len, int hint) { if (DEBUG) assert len > 0 && hint >= 0 && hint < len; int lastOfs = 0; int ofs = 1; if (key.compareTo(a[base + hint]) > 0) { // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs] int maxOfs = len - hint; while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to base lastOfs += hint; ofs += hint; } else { // key <= a[base + hint] // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs] final int maxOfs = hint + 1; while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to base int tmp = lastOfs; lastOfs = hint - ofs; ofs = hint - tmp; } if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len; /* * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere to the right of lastOfs but no farther right than ofs. * Do a binary search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs]. */ lastOfs++; while (lastOfs < ofs) { int m = lastOfs + ((ofs - lastOfs) >>> 1); if (key.compareTo(a[base + m]) > 0) lastOfs = m + 1; // a[base + m] < key else ofs = m; // key <= a[base + m] } if (DEBUG) assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs] return ofs; } /** Like gallopLeft, except that if the range contains an element equal to key, gallopRight returns the index after the * rightmost equal element. * * @param key the key whose insertion point to search for * @param a the array in which to search * @param base the index of the first element in the range * @param len the length of the range; must be > 0 * @param hint the index at which to begin the search, 0 <= hint < n. The closer hint is to the result, the faster this method * will run. * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k] */ private static int gallopRight (Comparable key, Object[] a, int base, int len, int hint) { if (DEBUG) assert len > 0 && hint >= 0 && hint < len; int ofs = 1; int lastOfs = 0; if (key.compareTo(a[base + hint]) < 0) { // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs] int maxOfs = hint + 1; while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to b int tmp = lastOfs; lastOfs = hint - ofs; ofs = hint - tmp; } else { // a[b + hint] <= key // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs] int maxOfs = len - hint; while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to b lastOfs += hint; ofs += hint; } if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len; /* * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to the right of lastOfs but no farther right than ofs. * Do a binary search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs]. */ lastOfs++; while (lastOfs < ofs) { int m = lastOfs + ((ofs - lastOfs) >>> 1); if (key.compareTo(a[base + m]) < 0) ofs = m; // key < a[b + m] else lastOfs = m + 1; // a[b + m] <= key } if (DEBUG) assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs] return ofs; } /** Merges two adjacent runs in place, in a stable fashion. The first element of the first run must be greater than the first * element of the second run (a[base1] > a[base2]), and the last element of the first run (a[base1 + len1-1]) must be greater * than all elements of the second run. * * For performance, this method should be called only when len1 <= len2; its twin, mergeHi should be called if len1 >= len2. * (Either method may be called if len1 == len2.) * * @param base1 index of first element in first run to be merged * @param len1 length of first run to be merged (must be > 0) * @param base2 index of first element in second run to be merged (must be aBase + aLen) * @param len2 length of second run to be merged (must be > 0) */ @SuppressWarnings({"unchecked", "rawtypes"}) private void mergeLo (int base1, int len1, int base2, int len2) { if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2; // Copy first run into temp array Object[] a = this.a; // For performance Object[] tmp = ensureCapacity(len1); System.arraycopy(a, base1, tmp, 0, len1); int cursor1 = 0; // Indexes into tmp array int cursor2 = base2; // Indexes int a int dest = base1; // Indexes int a // Move first element of second run and deal with degenerate cases a[dest++] = a[cursor2++]; if (--len2 == 0) { System.arraycopy(tmp, cursor1, a, dest, len1); return; } if (len1 == 1) { System.arraycopy(a, cursor2, a, dest, len2); a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge return; } int minGallop = this.minGallop; // Use local variable for performance outer: while (true) { int count1 = 0; // Number of times in a row that first run won int count2 = 0; // Number of times in a row that second run won /* * Do the straightforward thing until (if ever) one run starts winning consistently. */ do { if (DEBUG) assert len1 > 1 && len2 > 0; if (((Comparable)a[cursor2]).compareTo(tmp[cursor1]) < 0) { a[dest++] = a[cursor2++]; count2++; count1 = 0; if (--len2 == 0) break outer; } else { a[dest++] = tmp[cursor1++]; count1++; count2 = 0; if (--len1 == 1) break outer; } } while ((count1 | count2) < minGallop); /* * One run is winning so consistently that galloping may be a huge win. So try that, and continue galloping until (if * ever) neither run appears to be winning consistently anymore. */ do { if (DEBUG) assert len1 > 1 && len2 > 0; count1 = gallopRight((Comparable)a[cursor2], tmp, cursor1, len1, 0); if (count1 != 0) { System.arraycopy(tmp, cursor1, a, dest, count1); dest += count1; cursor1 += count1; len1 -= count1; if (len1 <= 1) // len1 == 1 || len1 == 0 break outer; } a[dest++] = a[cursor2++]; if (--len2 == 0) break outer; count2 = gallopLeft((Comparable)tmp[cursor1], a, cursor2, len2, 0); if (count2 != 0) { System.arraycopy(a, cursor2, a, dest, count2); dest += count2; cursor2 += count2; len2 -= count2; if (len2 == 0) break outer; } a[dest++] = tmp[cursor1++]; if (--len1 == 1) break outer; minGallop--; } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP); if (minGallop < 0) minGallop = 0; minGallop += 2; // Penalize for leaving gallop mode } // End of "outer" loop this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field if (len1 == 1) { if (DEBUG) assert len2 > 0; System.arraycopy(a, cursor2, a, dest, len2); a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge } else if (len1 == 0) { throw new IllegalArgumentException("Comparison method violates its general contract!"); } else { if (DEBUG) assert len2 == 0; if (DEBUG) assert len1 > 1; System.arraycopy(tmp, cursor1, a, dest, len1); } } /** Like mergeLo, except that this method should be called only if len1 >= len2; mergeLo should be called if len1 <= len2. * (Either method may be called if len1 == len2.) * * @param base1 index of first element in first run to be merged * @param len1 length of first run to be merged (must be > 0) * @param base2 index of first element in second run to be merged (must be aBase + aLen) * @param len2 length of second run to be merged (must be > 0) */ @SuppressWarnings({"unchecked", "rawtypes"}) private void mergeHi (int base1, int len1, int base2, int len2) { if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2; // Copy second run into temp array Object[] a = this.a; // For performance Object[] tmp = ensureCapacity(len2); System.arraycopy(a, base2, tmp, 0, len2); int cursor1 = base1 + len1 - 1; // Indexes into a int cursor2 = len2 - 1; // Indexes into tmp array int dest = base2 + len2 - 1; // Indexes into a // Move last element of first run and deal with degenerate cases a[dest--] = a[cursor1--]; if (--len1 == 0) { System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2); return; } if (len2 == 1) { dest -= len1; cursor1 -= len1; System.arraycopy(a, cursor1 + 1, a, dest + 1, len1); a[dest] = tmp[cursor2]; return; } int minGallop = this.minGallop; // Use local variable for performance outer: while (true) { int count1 = 0; // Number of times in a row that first run won int count2 = 0; // Number of times in a row that second run won /* * Do the straightforward thing until (if ever) one run appears to win consistently. */ do { if (DEBUG) assert len1 > 0 && len2 > 1; if (((Comparable)tmp[cursor2]).compareTo(a[cursor1]) < 0) { a[dest--] = a[cursor1--]; count1++; count2 = 0; if (--len1 == 0) break outer; } else { a[dest--] = tmp[cursor2--]; count2++; count1 = 0; if (--len2 == 1) break outer; } } while ((count1 | count2) < minGallop); /* * One run is winning so consistently that galloping may be a huge win. So try that, and continue galloping until (if * ever) neither run appears to be winning consistently anymore. */ do { if (DEBUG) assert len1 > 0 && len2 > 1; count1 = len1 - gallopRight((Comparable)tmp[cursor2], a, base1, len1, len1 - 1); if (count1 != 0) { dest -= count1; cursor1 -= count1; len1 -= count1; System.arraycopy(a, cursor1 + 1, a, dest + 1, count1); if (len1 == 0) break outer; } a[dest--] = tmp[cursor2--]; if (--len2 == 1) break outer; count2 = len2 - gallopLeft((Comparable)a[cursor1], tmp, 0, len2, len2 - 1); if (count2 != 0) { dest -= count2; cursor2 -= count2; len2 -= count2; System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2); if (len2 <= 1) break outer; // len2 == 1 || len2 == 0 } a[dest--] = a[cursor1--]; if (--len1 == 0) break outer; minGallop--; } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP); if (minGallop < 0) minGallop = 0; minGallop += 2; // Penalize for leaving gallop mode } // End of "outer" loop this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field if (len2 == 1) { if (DEBUG) assert len1 > 0; dest -= len1; cursor1 -= len1; System.arraycopy(a, cursor1 + 1, a, dest + 1, len1); a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge } else if (len2 == 0) { throw new IllegalArgumentException("Comparison method violates its general contract!"); } else { if (DEBUG) assert len1 == 0; if (DEBUG) assert len2 > 0; System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2); } } /** Ensures that the external array tmp has at least the specified number of elements, increasing its size if necessary. The * size increases exponentially to ensure amortized linear time complexity. * * @param minCapacity the minimum required capacity of the tmp array * @return tmp, whether or not it grew */ private Object[] ensureCapacity (int minCapacity) { if (tmp.length < minCapacity) { // Compute smallest power of 2 > minCapacity int newSize = minCapacity; newSize |= newSize >> 1; newSize |= newSize >> 2; newSize |= newSize >> 4; newSize |= newSize >> 8; newSize |= newSize >> 16; newSize++; if (newSize < 0) // Not bloody likely! newSize = minCapacity; else newSize = Math.min(newSize, a.length >>> 1); Object[] newArray = new Object[newSize]; tmp = newArray; } return tmp; } /** Checks that fromIndex and toIndex are in range, and throws an appropriate exception if they aren't. * * @param arrayLen the length of the array * @param fromIndex the index of the first element of the range * @param toIndex the index after the last element of the range * @throws IllegalArgumentException if fromIndex > toIndex * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or toIndex > arrayLen */ private static void rangeCheck (int arrayLen, int fromIndex, int toIndex) { if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); if (fromIndex < 0) throw new ArrayIndexOutOfBoundsException(fromIndex); if (toIndex > arrayLen) throw new ArrayIndexOutOfBoundsException(toIndex); } }