net.openhft.chronicle.wire.LongArrayValueBitSet Maven / Gradle / Ivy
/*
* Copyright 2016-2021 chronicle.software
*
* https://chronicle.software
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package net.openhft.chronicle.wire;
import net.openhft.chronicle.bytes.Bytes;
import net.openhft.chronicle.bytes.ref.BinaryLongArrayReference;
import net.openhft.chronicle.core.OS;
import net.openhft.chronicle.core.io.AbstractCloseable;
import net.openhft.chronicle.core.io.IORuntimeException;
import net.openhft.chronicle.core.values.LongArrayValues;
import net.openhft.chronicle.core.values.LongValue;
import net.openhft.chronicle.threads.Pauser;
import org.jetbrains.annotations.NotNull;
import java.nio.ByteBuffer;
import java.util.*;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;
import static net.openhft.chronicle.core.io.Closeable.closeQuietly;
/**
* This {@code ChronicleBitSet} is intended to be shared between processes. To minimize locking constraints, it is implemented as a lock-free solution
* without support for resizing.
*/
@SuppressWarnings("this-escape")
public class LongArrayValueBitSet extends AbstractCloseable implements Marshallable, ChronicleBitSet {
/* Used to shift left or right for a partial word mask */
private static final long WORD_MASK = ~0L;
// Pauser object used for managing concurrent access (assuming based on its name, actual use needs context)
private transient Pauser pauser;
/**
* The internal field corresponding to the serialField "bits".
*/
private LongArrayValues words;
/**
* Constructs a new {@code LongArrayValueBitSet} with the given maximum number of bits.
*
* @param maxNumberOfBits Maximum number of bits that the bit set can handle.
*/
public LongArrayValueBitSet(final long maxNumberOfBits) {
words = new BinaryLongArrayReference((maxNumberOfBits + BITS_PER_WORD - 1) / BITS_PER_WORD);
singleThreadedCheckDisabled(true);
}
/**
* Constructs a new {@code LongArrayValueBitSet} with the given maximum number of bits and initializes it with the given {@code Wire}.
*
* @param maxNumberOfBits Maximum number of bits that the bit set can handle.
* @param w The {@code Wire} object to be used for initialization.
*/
public LongArrayValueBitSet(final long maxNumberOfBits, Wire w) {
this(maxNumberOfBits);
writeMarshallable(w);
readMarshallable(w);
}
/**
* Calculates the word index in the internal storage corresponding to a given bit index.
*
* @param bitIndex The bit index for which to find the word index.
* @return The word index containing the given bit index.
* @throws IndexOutOfBoundsException if the provided bitIndex is negative.
*/
private static int wordIndex(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
return (int) (bitIndex / BITS_PER_WORD);
}
/**
* Constructs and returns a new {@code BitSet} using the bits from the provided byte array.
*
* @param bytes The byte array to be used for constructing the {@code BitSet}.
* @return A new {@code BitSet} containing all bits from the given byte array.
*/
public static BitSet valueOf(byte[] bytes) {
return BitSet.valueOf(ByteBuffer.wrap(bytes));
}
/**
* Checks that fromIndex ... toIndex is a valid range of bit indices.
*/
private static void checkRange(int fromIndex, int toIndex) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
if (toIndex < 0)
throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
if (fromIndex > toIndex)
throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
" > toIndex: " + toIndex);
}
@Override
public long getWord(int wordIndex) {
return wordIndex < getWordsInUse() ? words.getValueAt(wordIndex) : 0;
}
@Override
public void setWord(int wordIndex, long bits) {
expandTo(wordIndex);
words.setValueAt(wordIndex, bits);
}
@Override
protected void performClose() {
closeQuietly(words);
}
/**
* Retrieves the number of words that are currently in use by this bit set.
* This indicates the number of long values that are currently utilized to represent bits in the bit set.
*
* @return The number of words in use, converted to an integer.
*/
public int getWordsInUse() {
return Math.toIntExact(words.getUsed());
}
/**
* Sets a specific word in this bit set using a provided function and parameter.
* This method is lock-free and uses CAS operations to safely update the word value.
*
* @param wordIndex The index of the word to set.
* @param param The parameter to pass to the function.
* @param function The function to compute the new word value based on the old value and the provided parameter.
*/
public void set(int wordIndex, long param, LongFunction function) {
throwExceptionIfClosed();
final Pauser internalPauser = pauser();
internalPauser.reset();
expandTo(wordIndex);
for (; ; ) {
final long oldValue = words.getVolatileValueAt(wordIndex);
final long value = function.apply(oldValue, param);
if (oldValue == value || words.compareAndSet(wordIndex, oldValue, value))
break;
internalPauser.pause();
}
}
/**
* Retrieves or initializes the internal {@code Pauser}, which is used to manage pauses during lock-free operations.
*
* @return The {@code Pauser} instance associated with this object.
*/
private Pauser pauser() {
if (this.pauser == null)
this.pauser = Pauser.busy();
return this.pauser;
}
/**
* Sets a new value for a given word in this bit set.
* This method is lock-free and uses CAS operations to safely set the new word value.
*
* @param word The {@code LongValue} instance representing the word to set.
* @param newValue The new value to set for the word.
*/
public void set(LongValue word, long newValue) {
throwExceptionIfClosed();
pauser.reset();
long oldValue = word.getVolatileValue();
while (!word.compareAndSwapValue(oldValue, newValue)) {
pauser.pause();
}
}
/**
* Converts the bits in this bit set to a byte array.
* This allows the bit set to be easily serialized or transferred.
*
* @return A byte array containing all the bits in this bit set.
*/
public byte[] toByteArray() {
throwExceptionIfClosed();
int n = Math.toIntExact(getWordsInUse());
if (n == 0)
return new byte[0];
Bytes bytes = Bytes.allocateElasticOnHeap(Math.toIntExact(n * 8L));
bytes.writeLong(words.getVolatileValueAt(0));
for (int i = 1; i < n; i++)
bytes.writeLong(words.getValueAt(i));
return bytes.underlyingObject();
}
/**
* Ensures that the ChronicleBitSet can accommodate a given wordIndex.
*
* @param wordIndex the index to be accommodated.
*/
private void expandTo(int wordIndex) {
int wordsRequired = wordIndex + 1;
final long capacity = words.getCapacity();
if (wordsRequired <= capacity) {
words.setMaxUsed(wordsRequired);
} else if (wordsRequired > capacity) {
throw new UnsupportedOperationException("todo: it is not possible currently to expand " +
"this structure, because if its concurrent nature and have to implement cross " +
"process locking capacity: " + capacity + ", wordIndex: " + wordIndex);
}
}
/**
* Flips the bit at the specified index, turning it to its opposite value (0 to 1, or 1 to 0).
*
* @param bitIndex The index of the bit to flip.
*/
public void flip(int bitIndex) {
throwExceptionIfClosed();
int wordIndex = wordIndex(bitIndex);
expandTo(wordIndex);
caret(wordIndex, 1L << bitIndex);
}
/**
* Performs a bitwise XOR operation on the specified word using the given parameter.
* The result replaces the word's current value.
*
* @param wordIndex The index of the word to modify.
* @param param The long value to use in the XOR operation.
*/
private void caret(int wordIndex, long param) {
set(wordIndex, param, (x, y) -> x ^ y);
}
/**
* Performs a bitwise AND operation on the specified word using the given parameter.
* The result replaces the word's current value.
*
* @param wordIndex The index of the word to modify.
* @param param The long value to use in the AND operation.
*/
private void and(int wordIndex, final long param) {
set(wordIndex, param, (x, y) -> x & y);
}
/**
* Flips the bits from a starting index to an ending index.
* Each bit in the specified range will be turned to its opposite value.
*
* @param fromIndex The starting index of the range, inclusive.
* @param toIndex The ending index of the range, exclusive.
*/
public void flip(int fromIndex, int toIndex) {
throwExceptionIfClosed();
checkRange(fromIndex, toIndex);
if (fromIndex == toIndex)
return;
int startWordIndex = wordIndex(fromIndex);
int endWordIndex = wordIndex(toIndex - 1);
expandTo(endWordIndex);
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
caret(startWordIndex, firstWordMask & lastWordMask);
} else {
// Case 2: Multiple words
// Handle first word
caret(startWordIndex, firstWordMask);
// Handle intermediate words, if any
for (int i = startWordIndex + 1; i < endWordIndex; i++)
caret(i, WORD_MASK);
// Handle last word
caret(endWordIndex, lastWordMask);
}
}
/**
* Sets the bit at the specified index to {@code true}.
*
* @param bitIndex The index of the bit to be set.
*/
public void set(int bitIndex) {
throwExceptionIfClosed();
int wordIndex = wordIndex(bitIndex);
pipe(wordIndex, (1L << bitIndex)); // Activates the bit at the specified index
}
/**
* Performs a bitwise OR operation on the specified word using the provided parameter.
* This operation effectively sets specific bits to {@code true}.
*
* @param wordIndex The index of the word to modify.
* @param param The long value to use in the OR operation.
*/
private void pipe(int wordIndex, long param) {
set(wordIndex, param, (x, y) -> x | y);
}
/**
* Sets or clears the bit at the specified index based on the provided boolean value.
*
* @param bitIndex The index of the bit to be modified.
* @param value If {@code true}, the bit will be set; if {@code false}, the bit will be cleared.
*/
public void set(int bitIndex, boolean value) {
throwExceptionIfClosed();
if (value)
set(bitIndex);
else
clear(bitIndex);
}
/**
* Sets all bits in the specified range to {@code true}.
*
* @param fromIndex The starting index of the range, inclusive.
* @param toIndex The ending index of the range, exclusive.
*/
public void set(int fromIndex, int toIndex) {
throwExceptionIfClosed();
checkRange(fromIndex, toIndex);
if (fromIndex == toIndex)
return;
// Increase capacity if necessary
int startWordIndex = wordIndex(fromIndex);
int endWordIndex = wordIndex(toIndex - 1);
expandTo(endWordIndex);
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
pipe(startWordIndex, firstWordMask & lastWordMask);
} else {
// Case 2: Multiple words
// Handle first word
pipe(startWordIndex, firstWordMask);
// Handle intermediate words, if any
for (int i = startWordIndex + 1; i < endWordIndex; i++)
setWord(i, WORD_MASK);
// Handle last word (restores invariants)
pipe(endWordIndex, lastWordMask);
}
}
/**
* Clears (sets to {@code false}) the bit specified by the index.
* If the bit index is beyond the current words in use, the operation is ignored.
*
* @param bitIndex The index of the bit to be cleared.
*/
public void clear(int bitIndex) {
throwExceptionIfClosed();
int wordIndex = wordIndex(bitIndex);
// If the wordIndex is beyond current words in use, there's nothing to clear
if (wordIndex >= getWordsInUse())
return;
// AND operation with the complement of the bit set to clear the specified bit
and(wordIndex, ~(1L << bitIndex));
}
/**
* Clears (sets to {@code false}) the range of bits from the specified starting index (inclusive) to the ending index (exclusive).
* The method adjusts ranges if necessary and ensures efficient clearing even for larger ranges.
*
* @param fromIndex Starting index of the range (inclusive).
* @param toIndex Ending index of the range (exclusive).
*/
public void clear(int fromIndex, int toIndex) {
throwExceptionIfClosed();
checkRange(fromIndex, toIndex);
// If start and end are the same, no bits to clear
if (fromIndex == toIndex)
return;
int startWordIndex = wordIndex(fromIndex);
// If the startWordIndex is beyond current words in use, there's nothing to clear
if (startWordIndex >= getWordsInUse())
return;
int endWordIndex = wordIndex(toIndex - 1);
// Adjust the range if the endWordIndex is beyond words in use
if (endWordIndex >= getWordsInUse()) {
toIndex = length();
endWordIndex = getWordsInUse() - 1;
}
// Generate masks for the start and end words
long firstWordMask = WORD_MASK << fromIndex;
long lastWordMask = WORD_MASK >>> -toIndex;
if (startWordIndex == endWordIndex) {
// Case 1: One word
and(startWordIndex, ~(firstWordMask &
lastWordMask));
} else {
// Case 2: Multiple words
// Handle first word
and(startWordIndex, ~firstWordMask);
// Set all bits to false for intermediate words
for (int i = startWordIndex + 1; i < endWordIndex; i++)
words.setOrderedValueAt(i, 0);
// Clear bits in the last word
and(endWordIndex, ~lastWordMask);
}
}
/**
* Sets all bits in this ChronicleBitSet to {@code false}.
* Post invocation, the ChronicleBitSet is effectively empty with no bits set to {@code true}.
*/
public void clear() {
throwExceptionIfClosed();
int value = Math.toIntExact(getWordsInUse());
// Iterate and set each word to zero
while (value > 0)
words.setValueAt(--value, 0);
// Reset the number of words in use
words.setUsed(0);
}
/**
* Returns the value of the bit with the specified index. The value is {@code true} if the bit with the index {@code bitIndex} is currently set in
* this {@code ChronicleBitSet}; otherwise, the result is {@code false}.
*
* @param bitIndex the bit index
* @return the value of the bit with the specified index
* @throws IndexOutOfBoundsException if the specified index is negative
*/
public boolean get(int bitIndex) {
throwExceptionIfClosed();
int wordIndex = wordIndex(bitIndex);
// Check if the bit at the specified index is set and within the current words in use
return (wordIndex < getWordsInUse())
&& ((words.getValueAt(wordIndex) & (1L << bitIndex)) != 0);
}
/**
* Finds and returns the index of the first bit that is set to {@code true} after the specified starting index.
* If no such bit exists then it returns -1.
*
* @param fromIndex The index to start checking from (inclusive).
* @return Index of the next set bit, or -1 if there's no set bit found.
*/
public int nextSetBit(int fromIndex) {
throwExceptionIfClosed();
int u = wordIndex(fromIndex);
// If the word index is beyond the current words in use, no set bit exists
if (u >= getWordsInUse())
return -1;
// Create a mask to filter out bits before the fromIndex
long word = words.getVolatileValueAt(u) & (WORD_MASK << fromIndex);
while (true) {
if (word != 0)
// Use Long's numberOfTrailingZeros to quickly find the next set bit in the current word
return Math.toIntExact((u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word));
if (++u == getWordsInUse())
return -1;
word = words.getValueAt(u);
}
}
/**
* Retrieves the index of the first bit set to {@code true} that occurs on or after the specified starting index
* and before the specified ending index. If no such bit exists within the specified range, it returns {@code -1}.
*
* @param fromIndex The index to start checking from (inclusive).
* @param toIndex The index to stop checking at (exclusive).
* @return Index of the next set bit in the specified range, or {@code -1} if there's no set bit found.
*/
public int nextSetBit(int fromIndex, int toIndex) {
throwExceptionIfClosed();
int u = wordIndex(fromIndex);
// If the word index is beyond the current words in use, no set bit exists
if (u >= getWordsInUse())
return -1;
// Create a mask to filter out bits before the fromIndex
long word = words.getVolatileValueAt(u) & (WORD_MASK << fromIndex);
while (true) {
if (word != 0)
// Use Long's numberOfTrailingZeros to quickly find the next set bit in the current word
return Math.toIntExact((u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word));
if (++u == getWordsInUse())
return -1;
if (u * BITS_PER_WORD > toIndex)
return -1;
word = words.getValueAt(u);
}
}
/**
* Retrieves the index of the first bit set to {@code false} that occurs on or after the specified starting index.
* If all bits are set to {@code true} after the specified index, it returns the length of this ChronicleBitSet.
*
* @param fromIndex The index to start checking from (inclusive).
* @return Index of the next clear bit or the length of this ChronicleBitSet if no clear bit is found.
*/
public int nextClearBit(int fromIndex) {
throwExceptionIfClosed();
int u = wordIndex(fromIndex);
// If the word index is beyond the current words in use, return the fromIndex as no bit is set
if (u >= getWordsInUse())
return fromIndex;
// Complement the word to find clear bits and create a mask for bits after the fromIndex
long word = ~words.getVolatileValueAt(u) & (WORD_MASK << fromIndex);
while (true) {
if (word != 0)
// Use Long's numberOfTrailingZeros to quickly find the next clear bit in the current word
return Math.toIntExact((u * BITS_PER_WORD) + Long.numberOfTrailingZeros(word));
if (++u == getWordsInUse())
// TODO Overflows to MIN_VALUE
return (int) (getWordsInUse() * BITS_PER_WORD);
word = ~words.getValueAt(u);
}
}
/**
* Identifies the closest bit set to {@code true} that occurs on or before the given starting index.
* If no such bit exists or if {@code -1} is the starting index, the method returns {@code -1}.
*
* @param fromIndex The index to start the reverse search from (inclusive).
* @return Index of the previous set bit or {@code -1} if no set bit is found.
*/
public int previousSetBit(int fromIndex) {
throwExceptionIfClosed();
// Special case for -1, to return -1 as specified
if (fromIndex < 0) {
if (fromIndex == -1)
return -1;
throw new IndexOutOfBoundsException(
"fromIndex < -1: " + fromIndex);
}
int u = wordIndex(fromIndex);
// If the word index surpasses the number of words currently in use
if (u >= getWordsInUse())
return length() - 1;
// Create a mask to filter out bits after the fromIndex
long word = words.getVolatileValueAt(u) & (WORD_MASK >>> -(fromIndex + 1));
while (true) {
if (word != 0)
// Utilize Long's numberOfLeadingZeros to swiftly identify the previous set bit in the current word
return Math.toIntExact((u + 1) * BITS_PER_WORD - 1 - Long.numberOfLeadingZeros(word));
if (u-- == 0)
return -1;
word = words.getValueAt(u);
}
}
/**
* Identifies the closest bit set to {@code false} that occurs on or before the given starting index.
* If no such bit exists or if {@code -1} is the starting index, the method returns {@code -1}.
*
* @param fromIndex The index to start the reverse search from (inclusive).
* @return Index of the previous clear bit or {@code -1} if no clear bit is found.
*/
public int previousClearBit(int fromIndex) {
throwExceptionIfClosed();
// Special case for -1, to return -1 as specified
if (fromIndex < 0) {
if (fromIndex == -1)
return -1;
throw new IndexOutOfBoundsException(
"fromIndex < -1: " + fromIndex);
}
int u = wordIndex(fromIndex);
// If the word index surpasses the number of words currently in use
if (u >= getWordsInUse())
return fromIndex;
// Complement the word to search for clear bits and apply a mask for bits after the fromIndex
long word = ~words.getVolatileValueAt(u) & (WORD_MASK >>> -(fromIndex + 1));
while (true) {
if (word != 0)
// Utilize Long's numberOfLeadingZeros to swiftly identify the previous clear bit in the current word
return Math.toIntExact((u + 1) * BITS_PER_WORD - 1 - Long.numberOfLeadingZeros(word));
if (u-- == 0)
return -1;
word = ~words.getValueAt(u);
}
}
/**
* Determines if there's any overlapping bit set to {@code true} between this {@code ChronicleBitSet} and the given {@code ChronicleBitSet}.
*
* @param set The {@code ChronicleBitSet} to compare against.
* @return {@code true} if there's an intersecting bit set to {@code true} between the two sets, {@code false} otherwise.
*/
public boolean intersects(ChronicleBitSet set) {
throwExceptionIfClosed();
// Loop through words of both bitsets to check for intersection
for (int i = Math.min(getWordsInUse(), set.getWordsInUse()) - 1; i >= 0; i--)
if ((words.getVolatileValueAt(i) & set.getWord(i)) != 0)
return true; // Intersection found
return false; // No intersection found
}
/**
* Computes the number of bits that are currently set to {@code true} in this {@code ChronicleBitSet}.
*
* @return The count of bits set to {@code true}.
*/
public int cardinality() {
throwExceptionIfClosed();
long sum = 0;
// Counting bits set to true for each word
for (int i = 0; i < getWordsInUse(); i++)
sum += Long.bitCount(words.getVolatileValueAt(i));
return (int) sum;
}
/**
* Performs a bitwise AND operation between this {@code ChronicleBitSet} and the provided set.
* After this operation, a bit will be set to {@code true} in this set only if it was already set to {@code true} and the corresponding bit in the provided set is {@code true}.
*
* @param set The {@code ChronicleBitSet} to perform the AND operation with.
*/
public void and(ChronicleBitSet set) {
throwExceptionIfClosed();
// Check for self-reference, if true, no need to modify the current bitset
if (this == set)
return;
OS.memory().loadFence(); // Ensuring recent changes to memory are visible
int value = Math.toIntExact(getWordsInUse());
// Resetting any bits that are beyond the word length of the provided set
while (value > set.getWordsInUse())
words.setValueAt(--value, 0);
// Perform bitwise AND for overlapping words
for (int i = 0; i < value; i++)
and(i, set.getWord(i));
OS.memory().storeFence(); // Ensuring changes made are visible to other threads
}
/**
* Performs a logical OR of this bit set with the bit set argument. This bit set is modified so that a bit in it has the value {@code true}
* if and only if it either already had the value {@code true} or the corresponding bit in the bit set argument has the value {@code true}.
*/
public void or(ChronicleBitSet set) {
throwExceptionIfClosed();
if (this == set)
return;
expandTo(set.getWordsInUse() - 1);
long wordsInCommon = Math.min(getWordsInUse(), set.getWordsInUse());
OS.memory().loadFence();
// Perform logical OR on words in common
int i;
for (i = 0; i < wordsInCommon; i++)
pipe(i, set.getWord(i));
// Copy any remaining words
for (; i < set.getWordsInUse(); i++)
setWord(i, set.getWord(i));
OS.memory().storeFence();
}
/**
* Performs a logical XOR of this bit set with the bit set argument. This bit set is modified so that a bit in it has the value {@code
* true} if and only if one of the following statements holds:
*
* - The bit initially has the value {@code true}, and the
* corresponding bit in the argument has the value {@code false}.
*
- The bit initially has the value {@code false}, and the
* corresponding bit in the argument has the value {@code true}.
*
*/
public void xor(ChronicleBitSet set) {
throwExceptionIfClosed();
final int wordsInUse = getWordsInUse();
final int wordsInUse2 = set.getWordsInUse();
final int wordsInCommon = Math.toIntExact(Math.min(wordsInUse, wordsInUse2));
// Expand current bitset if necessary to ensure it can accommodate all bits from the provided set
expandTo(wordsInUse2 - 1);
OS.memory().loadFence();
// Ensuring recent changes to memory are visible
// Perform bitwise XOR on words in common
int i;
for (i = 0; i < wordsInCommon; i++)
caret(i, set.getWord(i));
// Copy any remaining words from the provided set
for (; i < wordsInUse2; i++)
words.setValueAt(i, set.getWord(i));
OS.memory().storeFence(); // Ensuring changes made are visible to other threads
}
/**
* Clears all the bits in this {@code ChronicleBitSet} that are set in the specified {@code ChronicleBitSet}.
* In other words, for each bit set in the provided set, the corresponding bit in this set is cleared.
*
* @param set The {@code ChronicleBitSet} whose set bits will be used to clear the corresponding bits in this set.
*/
public void andNot(ChronicleBitSet set) {
throwExceptionIfClosed();
// Perform logical (a & !b) on words in common
OS.memory().loadFence();
for (int i = Math.min(getWordsInUse(), set.getWordsInUse()) - 1; i >= 0; i--)
and(i, ~set.getWord(i));
OS.memory().storeFence(); // Ensuring changes made are visible to other threads
}
/**
* Returns the hash code for this {@code ChronicleBitSet}. The hash code is calculated based on the set bits in this bit set.
*
* @return The hash code for this bit set.
*/
public int hashCode() {
long h = 1234;
OS.memory().loadFence(); // Ensuring recent changes to memory are visible
for (int i = Math.toIntExact(getWordsInUse()); --i >= 0; )
h ^= words.getValueAt(i) * (i + 1);
return (int) ((h >> 32) ^ h);
}
/**
* Returns the total number of bits that this {@code ChronicleBitSet} can represent. This includes both set and unset bits.
*
* @return The number of bits this bit set can represent.
*/
public int size() {
return Math.toIntExact(words.getCapacity() * BITS_PER_WORD);
}
/**
* Compares this {@code ChronicleBitSet} against the specified object.
* The result is {@code true} if the object is a {@code ChronicleBitSet} and has the exact same set of bits set to {@code true} as this bit set.
*
* @param obj The object to compare with.
* @return {@code true} if the specified object is equivalent to this bit set, {@code false} otherwise.
*/
public boolean equals(Object obj) {
throwExceptionIfClosed();
// Check for object type and self-reference
if (!(obj instanceof ChronicleBitSet))
return false;
if (this == obj)
return true;
ChronicleBitSet set = (ChronicleBitSet) obj;
OS.memory().loadFence(); // Ensuring recent changes to memory are visible
// Compare words in use by both ChronicleBitSets
for (int i = 0, max = Math.max(getWordsInUse(), set.getWordsInUse()); i < max; i++)
if (getWord(i) != set.getWord(i))
return false;
return true;
}
/**
* Returns a string representation of this bit set. For every index for which this {@code ChronicleBitSet} contains a bit in the set state, the decimal
* representation of that index is included in the result. Such indices are listed in order from lowest to highest, separated by ", " (a
* comma and a space) and surrounded by braces, resulting in the usual mathematical notation for a set of integers.
*/
@Override
public String toString() {
int numBits = Math.toIntExact((getWordsInUse() > 128) ?
cardinality() : getWordsInUse() * BITS_PER_WORD);
StringBuilder b = new StringBuilder(6 * numBits + 2);
b.append('{');
int i = nextSetBit(0);
if (i != -1) {
b.append(i);
while (true) {
if (++i < 0) break;
if ((i = nextSetBit(i)) < 0) break;
int endOfRun = nextClearBit(i);
do {
b.append(", ").append(i);
}
while (++i != endOfRun);
}
}
b.append('}');
return b.toString();
}
/**
* Returns an ordered stream of indices for which this {@code ChronicleBitSet} contains a bit set to true.
* The indices are returned in ascending order. The size of the stream corresponds to the number of bits
* set to true, which matches the value returned by the {@link #cardinality()} method.
*
* @return An ordered IntStream of indices of bits set to true.
*/
public IntStream stream() {
throwExceptionIfClosed();
// Internal iterator to loop over set bits in the ChronicleBitSet
class BitSetIterator implements PrimitiveIterator.OfInt {
int next = nextSetBit(0); // starting from the first bit
@Override
public boolean hasNext() {
throwExceptionIfClosed();
return next != -1; // returns true if there is another set bit
}
@Override
public int nextInt() {
throwExceptionIfClosed();
if (next != -1) {
int ret = next;
next = nextSetBit(next + 1); // find the next set bit after the current one
return ret;
} else {
throw new NoSuchElementException(); // if no more set bits are found
}
}
}
// Constructing the IntStream using a spliterator and the internal iterator
return StreamSupport.intStream(
() -> Spliterators.spliterator(
new BitSetIterator(), cardinality(),
Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED),
Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED,
false);
}
@Override
public void writeMarshallable(@NotNull final WireOut wire) {
throwExceptionIfClosed();
wire.write("words").int64array(words.getCapacity(), words);
}
@Override
public void readMarshallable(@NotNull final WireIn wire) throws IORuntimeException {
singleThreadedCheckDisabled(true);
throwExceptionIfClosed();
closeQuietly(words);
wire.read("words").int64array(null, this, (t, a) -> t.words = a);
}
@Override
public void copyFrom(ChronicleBitSet bitSet) {
OS.memory().loadFence();
final int wordsInUse = bitSet.getWordsInUse();
final long capacity = words.getCapacity();
if (wordsInUse > capacity)
throw new IllegalArgumentException("Too much data " + wordsInUse + " words > " + capacity);
for (int i = getWordsInUse(); i > wordsInUse; i--)
words.setValueAt(i, 0L);
words.setUsed(wordsInUse);
for (int i = 0; i < wordsInUse; i++)
words.setValueAt(i, bitSet.getWord(i));
OS.memory().storeFence();
}
/**
* Represents a functional interface for a long-to-long function.
* This can be useful for operations that require transforming or manipulating long values.
*/
@FunctionalInterface
interface LongFunction {
/**
* Applies the function on the given long values.
*
* @param oldValue The old value.
* @param param The parameter value.
* @return The result of applying the function.
*/
long apply(long oldValue, long param);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy