net.sf.ehcache.store.AbstractPolicy Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ehcache-core Show documentation
Show all versions of ehcache-core Show documentation
This is the ehcache core module. Pair it with other modules for added functionality.
/**
* Copyright 2003-2010 Terracotta, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package net.sf.ehcache.store;
import net.sf.ehcache.Element;
import java.util.Random;
/**
* A base policy class
*
* @author Greg Luck
*/
public abstract class AbstractPolicy implements Policy {
/**
* The sample size to use
*/
static final int DEFAULT_SAMPLE_SIZE = 15;
/**
* Used to select random numbers
*/
static final Random RANDOM = new Random();
/**
* sampleSize how many samples to take
*
* @param populationSize the size of the store
* @return the smaller of the map size and the default sample size of 30
*/
public static int calculateSampleSize(int populationSize) {
if (populationSize < DEFAULT_SAMPLE_SIZE) {
return populationSize;
} else {
return DEFAULT_SAMPLE_SIZE;
}
}
/**
* Finds the best eviction candidate based on the sampled elements. What distuingishes this approach
* from the classic data structures approach, is that an Element contains metadata which can be used
* for making policy decisions, while generic data structures do not.
*
* @param sampledElements this should be a random subset of the population
* @param justAdded we never want to select the element just added. May be null.
* @return the least hit
*/
public Element selectedBasedOnPolicy(Element[] sampledElements, Element justAdded) {
//edge condition when Memory Store configured to size 0
if (sampledElements.length == 1 && justAdded != null) {
return justAdded;
}
Element lowestElement = null;
for (Element element : sampledElements) {
if (element == null) {
continue;
}
if (lowestElement == null) {
if (!element.equals(justAdded)) {
lowestElement = element;
}
} else if (compare(lowestElement, element) && !element.equals(justAdded)) {
lowestElement = element;
}
}
return lowestElement;
}
/**
* Generates a random sample from a population
*
* @param populationSize the size to draw from
* @return a list of random offsets
*/
public static int[] generateRandomSample(int populationSize) {
int sampleSize = calculateSampleSize(populationSize);
int[] offsets = new int[sampleSize];
//Guard against the possibility (which can happen) that the store has emptied, via another thread(s) and thus sampleSize is 0.
//Otherwise return an empty array.
if (sampleSize != 0) {
int maxOffset = 0;
maxOffset = populationSize / sampleSize;
for (int i = 0; i < sampleSize; i++) {
offsets[i] = RANDOM.nextInt(maxOffset);
}
}
return offsets;
}
}