All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jetty.util.TopologicalSort Maven / Gradle / Ivy

Go to download

Ehcache is an open source, standards-based cache used to boost performance, offload the database and simplify scalability. Ehcache is robust, proven and full-featured and this has made it the most widely-used Java-based cache.

There is a newer version: 2.10.9.2
Show newest version
//
//  ========================================================================
//  Copyright (c) 1995-2018 Mort Bay Consulting Pty. Ltd.
//  ------------------------------------------------------------------------
//  All rights reserved. This program and the accompanying materials
//  are made available under the terms of the Eclipse Public License v1.0
//  and Apache License v2.0 which accompanies this distribution.
//
//      The Eclipse Public License is available at
//      http://www.eclipse.org/legal/epl-v10.html
//
//      The Apache License v2.0 is available at
//      http://www.opensource.org/licenses/apache2.0.php
//
//  You may elect to redistribute this code under either of these licenses.
//  ========================================================================
//

package org.eclipse.jetty.util;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;


/**
 * Topological sort a list or array.
 * 

A Topological sort is used when you have a partial ordering expressed as * dependencies between elements (also often represented as edges in a directed * acyclic graph). A Topological sort should not be used when you have a total * ordering expressed as a {@link Comparator} over the items. The algorithm has * the additional characteristic that dependency sets are sorted by the original * list order so that order is preserved when possible.

*

* The sort algorithm works by recursively visiting every item, once and * only once. On each visit, the items dependencies are first visited and then the * item is added to the sorted list. Thus the algorithm ensures that dependency * items are always added before dependent items.

* * @param The type to be sorted. It must be able to be added to a {@link HashSet} */ public class TopologicalSort { private final Map> _dependencies = new HashMap<>(); /** * Add a dependency to be considered in the sort. * @param dependent The dependent item will be sorted after all its dependencies * @param dependency The dependency item, will be sorted before its dependent item */ public void addDependency(T dependent, T dependency) { Set set = _dependencies.get(dependent); if (set==null) { set=new HashSet<>(); _dependencies.put(dependent,set); } set.add(dependency); } /** Sort the passed array according to dependencies previously set with * {@link #addDependency(Object, Object)}. Where possible, ordering will be * preserved if no dependency * @param array The array to be sorted. */ public void sort(T[] array) { List sorted = new ArrayList<>(); Set visited = new HashSet<>(); Comparator comparator = new InitialOrderComparator<>(array); // Visit all items in the array for (T t : array) visit(t,visited,sorted,comparator); sorted.toArray(array); } /** Sort the passed list according to dependencies previously set with * {@link #addDependency(Object, Object)}. Where possible, ordering will be * preserved if no dependency * @param list The list to be sorted. */ public void sort(Collection list) { List sorted = new ArrayList<>(); Set visited = new HashSet<>(); Comparator comparator = new InitialOrderComparator<>(list); // Visit all items in the list for (T t : list) visit(t,visited,sorted,comparator); list.clear(); list.addAll(sorted); } /** Visit an item to be sorted. * @param item The item to be visited * @param visited The Set of items already visited * @param sorted The list to sort items into * @param comparator A comparator used to sort dependencies. */ private void visit(T item, Set visited, List sorted,Comparator comparator) { // If the item has not been visited if(!visited.contains(item)) { // We are visiting it now, so add it to the visited set visited.add(item); // Lookup the items dependencies Set dependencies = _dependencies.get(item); if (dependencies!=null) { // Sort the dependencies SortedSet ordered_deps = new TreeSet<>(comparator); ordered_deps.addAll(dependencies); // recursively visit each dependency try { for (T d:ordered_deps) visit(d,visited,sorted,comparator); } catch (CyclicException e) { throw new CyclicException(item,e); } } // Now that we have visited all our dependencies, they and their // dependencies will have been added to the sorted list. So we can // now add the current item and it will be after its dependencies sorted.add(item); } else if (!sorted.contains(item)) // If we have already visited an item, but it has not yet been put in the // sorted list, then we must be in a cycle! throw new CyclicException(item); } /** A comparator that is used to sort dependencies in the order they * were in the original list. This ensures that dependencies are visited * in the original order and no needless reordering takes place. * @param */ private static class InitialOrderComparator implements Comparator { private final Map _indexes = new HashMap<>(); InitialOrderComparator(T[] initial) { int i=0; for (T t : initial) _indexes.put(t,i++); } InitialOrderComparator(Collection initial) { int i=0; for (T t : initial) _indexes.put(t,i++); } @Override public int compare(T o1, T o2) { Integer i1=_indexes.get(o1); Integer i2=_indexes.get(o2); if (i1==null || i2==null || i1.equals(o2)) return 0; if (i1




© 2015 - 2025 Weber Informatics LLC | Privacy Policy