org.terracotta.statistics.derived.MinMaxAverage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ehcache Show documentation
Show all versions of ehcache Show documentation
Ehcache is an open source, standards-based cache used to boost performance,
offload the database and simplify scalability. Ehcache is robust, proven and full-featured and
this has made it the most widely-used Java-based cache.
/*
* All content copyright Terracotta, Inc., unless otherwise indicated.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.terracotta.statistics.derived;
import java.util.concurrent.Executor;
import java.util.concurrent.atomic.AtomicLong;
import org.terracotta.statistics.ValueStatistic;
import org.terracotta.statistics.observer.ChainedEventObserver;
import org.terracotta.statistics.util.InThreadExecutor;
import static java.lang.Double.doubleToLongBits;
import static java.lang.Double.longBitsToDouble;
/**
*
* @author cdennis
*/
public class MinMaxAverage implements ChainedEventObserver {
private final AtomicLong maximum = new AtomicLong(Long.MIN_VALUE);
private final AtomicLong minimum = new AtomicLong(Long.MAX_VALUE);
private final AtomicLong summation = new AtomicLong(doubleToLongBits(0.0));
private final AtomicLong count = new AtomicLong(0);
private final Executor executor;
public MinMaxAverage() {
this(InThreadExecutor.INSTANCE);
}
public MinMaxAverage(Executor executor) {
this.executor = executor;
}
@Override
public void event(long time, final long ... parameters) {
executor.execute(new Runnable() {
@Override
public void run() {
for (long max = maximum.get(); max < parameters[0] && !maximum.compareAndSet(max, parameters[0]); max = maximum.get());
for (long min = minimum.get(); min > parameters[0] && !minimum.compareAndSet(min, parameters[0]); min = minimum.get());
for (long sumBits = summation.get(); !summation.compareAndSet(sumBits, doubleToLongBits(longBitsToDouble(sumBits) + parameters[0])); sumBits = summation.get());
count.incrementAndGet();
}
});
}
public Long min() {
if (count.get() == 0) {
return null;
} else {
return minimum.get();
}
}
public ValueStatistic minStatistic() {
return new ValueStatistic() {
@Override
public Long value() {
return min();
}
};
}
public Double mean() {
if (count.get() == 0) {
return null;
} else {
return longBitsToDouble(summation.get()) / count.get();
}
}
public ValueStatistic meanStatistic() {
return new ValueStatistic() {
@Override
public Double value() {
return mean();
}
};
}
public Long max() {
if (count.get() == 0) {
return null;
} else {
return maximum.get();
}
}
public ValueStatistic maxStatistic() {
return new ValueStatistic() {
@Override
public Long value() {
return max();
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy