All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.geographiclib.GeoMath Maven / Gradle / Ivy

Go to download

This is a Java implementation of the geodesic algorithms from GeographicLib. This is a self-contained library to solve geodesic problems on an ellipsoid model of the earth. It requires Java version 1.7 or later.

There is a newer version: 2.0
Show newest version
/**
 * Implementation of the net.sf.geographiclib.GeoMath class
 *
 * Copyright (c) Charles Karney (2013-2015)  and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/
package net.sf.geographiclib;

/**
 * Mathematical functions needed by GeographicLib.
 * 

* Define mathematical functions and constants so that any version of Java * can be used. **********************************************************************/ public class GeoMath { /** * The number of binary digits in the fraction of a double precision * number (equivalent to C++'s {@code numeric_limits::digits}). **********************************************************************/ public static final int digits = 53; /** * Equivalent to C++'s {@code numeric_limits::epsilon()}. In Java * version 1.5 and later, Math.ulp(1.0) can be used. **********************************************************************/ public static final double epsilon = Math.pow(0.5, digits - 1); /** * Equivalent to C++'s {@code numeric_limits::min()}. In Java * version 1.6 and later, Double.MIN_NORMAL can be used. **********************************************************************/ public static final double min = Math.pow(0.5, 1022); /** * Square a number. *

* @param x the argument. * @return x2. **********************************************************************/ public static double sq(double x) { return x * x; } /** * The hypotenuse function avoiding underflow and overflow. In Java version * 1.5 and later, Math.hypot can be used. *

* @param x the first argument. * @param y the second argument. * @return sqrt(x2 + y2). **********************************************************************/ public static double hypot(double x, double y) { x = Math.abs(x); y = Math.abs(y); double a = Math.max(x, y), b = Math.min(x, y) / (a != 0 ? a : 1); return a * Math.sqrt(1 + b * b); // For an alternative method see // C. Moler and D. Morrision (1983) https://dx.doi.org/10.1147/rd.276.0577 // and A. A. Dubrulle (1983) https://dx.doi.org/10.1147/rd.276.0582 } /** * log(1 + x) accurate near x = 0. In Java version 1.5 and * later, Math.log1p can be used. *

* This is taken from D. Goldberg, * What every computer * scientist should know about floating-point arithmetic (1991), * Theorem 4. See also, N. J. Higham, Accuracy and Stability of Numerical * Algorithms, 2nd Edition (SIAM, 2002), Answer to Problem 1.5, p 528. *

* @param x the argument. * @return log(1 + x). **********************************************************************/ public static double log1p(double x) { double y = 1 + x, z = y - 1; // Here's the explanation for this magic: y = 1 + z, exactly, and z // approx x, thus log(y)/z (which is nearly constant near z = 0) returns // a good approximation to the true log(1 + x)/x. The multiplication x * // (log(y)/z) introduces little additional error. return z == 0 ? x : x * Math.log(y) / z; } /** * The inverse hyperbolic tangent function. This is defined in terms of * GeoMath.log1p(x) in order to maintain accuracy near x = 0. * In addition, the odd parity of the function is enforced. *

* @param x the argument. * @return atanh(x). **********************************************************************/ public static double atanh(double x) { double y = Math.abs(x); // Enforce odd parity y = Math.log1p(2 * y/(1 - y))/2; return x < 0 ? -y : y; } /** * The cube root function. In Java version 1.5 and later, Math.cbrt can be * used. *

* @param x the argument. * @return the real cube root of x. **********************************************************************/ public static double cbrt(double x) { double y = Math.pow(Math.abs(x), 1/3.0); // Return the real cube root return x < 0 ? -y : y; } public static Pair norm(double sinx, double cosx) { double r = hypot(sinx, cosx); return new Pair(sinx/r, cosx/r); } /** * The error-free sum of two numbers. *

* @param u the first number in the sum. * @param v the second number in the sum. * @return Pair(s, t) with s = round(u + * v) and t = u + v - s. *

* See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B. **********************************************************************/ public static Pair sum(double u, double v) { double s = u + v; double up = s - v; double vpp = s - up; up -= u; vpp -= v; double t = -(up + vpp); // u + v = s + t // = round(u + v) + t return new Pair(s, t); } /** * Evaluate a polynomial. *

* @param N the order of the polynomial. * @param p the coefficient array (of size N + s + 1 or more). * @param s starting index for the array. * @param x the variable. * @return the value of the polynomial. * * Evaluate y = ∑n=0..N * ps+n * xNn. Return 0 if N < 0. * Return ps, if N = 0 (even if x is * infinite or a nan). The evaluation uses Horner's method. **********************************************************************/ public static double polyval(int N, double p[], int s, double x) { double y = N < 0 ? 0 : p[s++]; while (--N >= 0) y = y * x + p[s++]; return y; } public static double AngRound(double x) { // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 // for reals = 0.7 pm on the earth if x is an angle in degrees. (This // is about 1000 times more resolution than we get with angles around 90 // degrees.) We use this to avoid having to deal with near singular // cases when x is non-zero but tiny (e.g., 1.0e-200). This also converts // -0 to +0. final double z = 1/16.0; double y = Math.abs(x); // The compiler mustn't "simplify" z - (z - y) to y y = y < z ? z - (z - y) : y; return x < 0 ? 0 - y : y; } /** * Normalize an angle (restricted input range). *

* @param x the angle in degrees. * @return the angle reduced to the range [−180°, 180°). *

* The range of x is unrestricted. **********************************************************************/ public static double AngNormalize(double x) { x = x % 360.0; return x < -180 ? x + 360 : (x < 180 ? x : x - 360); } /** * Normalize a latitude. *

* @param x the angle in degrees. * @return x if it is in the range [−90°, 90°], otherwise * return NaN. **********************************************************************/ public static double LatFix(double x) { return Math.abs(x) > 90 ? Double.NaN : x; } /** * Difference of two angles reduced to [−180°, 180°] *

* @param x the first angle in degrees. * @param y the second angle in degrees. * @return yx, reduced to the range [−180°, * 180°]. *

* x and y must both lie in [−180°, 180°]. The * result is equivalent to computing the difference exactly, reducing it to * (−180°, 180°] and rounding the result. Note that this * prescription allows −180° to be returned (e.g., if x is * tiny and negative and y = 180°). **********************************************************************/ public static double AngDiff(double x, double y) { double d, t; { Pair r = sum(AngNormalize(x), AngNormalize(-y)); d = - AngNormalize(r.first); t = r.second; } return (d == 180 && t < 0 ? -180 : d) - t; } /** * Evaluate the sine and cosine function with the argument in degrees * * @param x in degrees. * @return Pair(s, t) with s = sin(x) and * c = cos(x). * * The results obey exactly the elementary properties of the trigonometric * functions, e.g., sin 9° = cos 81° = − sin 123456789°. **********************************************************************/ public static Pair sincosd(double x) { // In order to minimize round-off errors, this function exactly reduces // the argument to the range [-45, 45] before converting it to radians. double r; int q; r = x % 360.0; q = (int)Math.floor(r / 90 + 0.5); r -= 90 * q; // now abs(r) <= 45 r = Math.toRadians(r); // Possibly could call the gnu extension sincos double s = Math.sin(r), c = Math.cos(r); double sinx, cosx; switch (q & 3) { case 0: sinx = s; cosx = c; break; case 1: sinx = c; cosx = 0 - s; break; case 2: sinx = 0 - s; cosx = 0 - c; break; default: sinx = 0 - c; cosx = s; break; // case 3 } return new Pair(sinx, cosx); } /** * Evaluate the atan2 function with the result in degrees * * @param y * @param x * @return atan2(y, x) in degrees. * * The result is in the range [−180° 180°). N.B., * atan2d(±0, −1) = −180°; atan2d(+ε, * −1) = +180°, for ε positive and tiny; * atan2d(±0, 1) = ±0°. **********************************************************************/ public static double atan2d(double y, double x) { // In order to minimize round-off errors, this function rearranges the // arguments so that result of atan2 is in the range [-pi/4, pi/4] before // converting it to degrees and mapping the result to the correct // quadrant. int q = 0; if (Math.abs(y) > Math.abs(x)) { double t; t = x; x = y; y = t; q = 2; } if (x < 0) { x = -x; ++q; } // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] double ang = Math.toDegrees(Math.atan2(y, x)); switch (q) { // Note that atan2d(-0.0, 1.0) will return -0. However, we expect that // atan2d will not be called with y = -0. If need be, include // // case 0: ang = 0 + ang; break; // // and handle mpfr as in AngRound. case 1: ang = (y > 0 ? 180 : -180) - ang; break; case 2: ang = 90 - ang; break; case 3: ang = -90 + ang; break; } return ang; } /** * Test for finiteness. *

* @param x the argument. * @return true if number is finite, false if NaN or infinite. **********************************************************************/ public static boolean isfinite(double x) { return Math.abs(x) <= Double.MAX_VALUE; } private GeoMath() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy