All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.geographiclib.Geodesic Maven / Gradle / Ivy

Go to download

This is a Java implementation of the geodesic algorithms from GeographicLib. This is a self-contained library to solve geodesic problems on an ellipsoid model of the earth. It requires Java version 1.7 or later.

There is a newer version: 2.0
Show newest version
/**
 * Implementation of the net.sf.geographiclib.Geodesic class
 *
 * Copyright (c) Charles Karney (2013-2017)  and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/
package net.sf.geographiclib;

/**
 * Geodesic calculations.
 * 

* The shortest path between two points on a ellipsoid at (lat1, * lon1) and (lat2, lon2) is called the geodesic. Its * length is s12 and the geodesic from point 1 to point 2 has azimuths * azi1 and azi2 at the two end points. (The azimuth is the * heading measured clockwise from north. azi2 is the "forward" * azimuth, i.e., the heading that takes you beyond point 2 not back to point * 1.) *

* Given lat1, lon1, azi1, and s12, we can * determine lat2, lon2, and azi2. This is the * direct geodesic problem and its solution is given by the function * {@link #Direct Direct}. (If s12 is sufficiently large that the * geodesic wraps more than halfway around the earth, there will be another * geodesic between the points with a smaller s12.) *

* Given lat1, lon1, lat2, and lon2, we can * determine azi1, azi2, and s12. This is the * inverse geodesic problem, whose solution is given by {@link #Inverse * Inverse}. Usually, the solution to the inverse problem is unique. In cases * where there are multiple solutions (all with the same s12, of * course), all the solutions can be easily generated once a particular * solution is provided. *

* The standard way of specifying the direct problem is the specify the * distance s12 to the second point. However it is sometimes useful * instead to specify the arc length a12 (in degrees) on the auxiliary * sphere. This is a mathematical construct used in solving the geodesic * problems. The solution of the direct problem in this form is provided by * {@link #ArcDirect ArcDirect}. An arc length in excess of 180° indicates * that the geodesic is not a shortest path. In addition, the arc length * between an equatorial crossing and the next extremum of latitude for a * geodesic is 90°. *

* This class can also calculate several other quantities related to * geodesics. These are: *

    *
  • * reduced length. If we fix the first point and increase * azi1 by dazi1 (radians), the second point is displaced * m12 dazi1 in the direction azi2 + 90°. The * quantity m12 is called the "reduced length" and is symmetric under * interchange of the two points. On a curved surface the reduced length * obeys a symmetry relation, m12 + m21 = 0. On a flat * surface, we have m12 = s12. The ratio s12/m12 * gives the azimuthal scale for an azimuthal equidistant projection. *
  • * geodesic scale. Consider a reference geodesic and a second * geodesic parallel to this one at point 1 and separated by a small distance * dt. The separation of the two geodesics at point 2 is M12 * dt where M12 is called the "geodesic scale". M21 is * defined similarly (with the geodesics being parallel at point 2). On a * flat surface, we have M12 = M21 = 1. The quantity * 1/M12 gives the scale of the Cassini-Soldner projection. *
  • * area. The area between the geodesic from point 1 to point 2 and * the equation is represented by S12; it is the area, measured * counter-clockwise, of the geodesic quadrilateral with corners * (lat1,lon1), (0,lon1), (0,lon2), and * (lat2,lon2). It can be used to compute the area of any * simple geodesic polygon. *
*

* The quantities m12, M12, M21 which all specify the * behavior of nearby geodesics obey addition rules. If points 1, 2, and 3 all * lie on a single geodesic, then the following rules hold: *

    *
  • * s13 = s12 + s23 *
  • * a13 = a12 + a23 *
  • * S13 = S12 + S23 *
  • * m13 = m12 M23 + m23 M21 *
  • * M13 = M12 M23 − (1 − M12 * M21) m23 / m12 *
  • * M31 = M32 M21 − (1 − M23 * M32) m12 / m23 *
*

* The results of the geodesic calculations are bundled up into a {@link * GeodesicData} object which includes the input parameters and all the * computed results, i.e., lat1, lon1, azi1, lat2, * lon2, azi2, s12, a12, m12, M12, * M21, S12. *

* The functions {@link #Direct(double, double, double, double, int) Direct}, * {@link #ArcDirect(double, double, double, double, int) ArcDirect}, and * {@link #Inverse(double, double, double, double, int) Inverse} include an * optional final argument outmask which allows you specify which * results should be computed and returned. If you omit outmask, then * the "standard" geodesic results are computed (latitudes, longitudes, * azimuths, and distance). outmask is bitor'ed combination of {@link * GeodesicMask} values. For example, if you wish just to compute the distance * between two points you would call, e.g., *

 * {@code
 *  GeodesicData g = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2,
 *                      GeodesicMask.DISTANCE); }
*

* Additional functionality is provided by the {@link GeodesicLine} class, * which allows a sequence of points along a geodesic to be computed. *

* The shortest distance returned by the solution of the inverse problem is * (obviously) uniquely defined. However, in a few special cases there are * multiple azimuths which yield the same shortest distance. Here is a * catalog of those cases: *

    *
  • * lat1 = −lat2 (with neither point at a pole). If * azi1 = azi2, the geodesic is unique. Otherwise there are * two geodesics and the second one is obtained by setting [azi1, * azi2] → [azi2, azi1], [M12, M21] * → [M21, M12], S12 → −S12. * (This occurs when the longitude difference is near ±180° for * oblate ellipsoids.) *
  • * lon2 = lon1 ± 180° (with neither point at a * pole). If azi1 = 0° or ±180°, the geodesic is * unique. Otherwise there are two geodesics and the second one is obtained * by setting [ azi1, azi2] → [−azi1, * −azi2], S12 → − S12. (This occurs * when lat2 is near −lat1 for prolate ellipsoids.) *
  • * Points 1 and 2 at opposite poles. There are infinitely many geodesics * which can be generated by setting [azi1, azi2] → * [azi1, azi2] + [d, −d], for arbitrary * d. (For spheres, this prescription applies when points 1 and 2 are * antipodal.) *
  • * s12 = 0 (coincident points). There are infinitely many geodesics which * can be generated by setting [azi1, azi2] → * [azi1, azi2] + [d, d], for arbitrary d. *
*

* The calculations are accurate to better than 15 nm (15 nanometers) for the * WGS84 ellipsoid. See Sec. 9 of * arXiv:1102.1215v1 for * details. The algorithms used by this class are based on series expansions * using the flattening f as a small parameter. These are only accurate * for |f| < 0.02; however reasonably accurate results will be * obtained for |f| < 0.2. Here is a table of the approximate * maximum error (expressed as a distance) for an ellipsoid with the same * equatorial radius as the WGS84 ellipsoid and different values of the * flattening.

 *     |f|      error
 *     0.01     25 nm
 *     0.02     30 nm
 *     0.05     10 um
 *     0.1     1.5 mm
 *     0.2     300 mm 
*

* The algorithms are described in *

*

* Example of use: *

 * {@code
 * // Solve the direct geodesic problem.
 *
 * // This program reads in lines with lat1, lon1, azi1, s12 and prints
 * // out lines with lat2, lon2, azi2 (for the WGS84 ellipsoid).
 *
 * import java.util.*;
 * import net.sf.geographiclib.*;
 * public class Direct {
 *   public static void main(String[] args) {
 *     try {
 *       Scanner in = new Scanner(System.in);
 *       double lat1, lon1, azi1, s12;
 *       while (true) {
 *         lat1 = in.nextDouble(); lon1 = in.nextDouble();
 *         azi1 = in.nextDouble(); s12 = in.nextDouble();
 *         GeodesicData g = Geodesic.WGS84.Direct(lat1, lon1, azi1, s12);
 *         System.out.println(g.lat2 + " " + g.lon2 + " " + g.azi2);
 *       }
 *     }
 *     catch (Exception e) {}
 *   }
 * }}
**********************************************************************/ public class Geodesic { /** * The order of the expansions used by Geodesic. **********************************************************************/ protected static final int GEOGRAPHICLIB_GEODESIC_ORDER = 6; protected static final int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nA3x_ = nA3_; protected static final int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nC3x_ = (nC3_ * (nC3_ - 1)) / 2; protected static final int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER; protected static final int nC4x_ = (nC4_ * (nC4_ + 1)) / 2; private static final int maxit1_ = 20; private static final int maxit2_ = maxit1_ + GeoMath.digits + 10; // Underflow guard. We require // tiny_ * epsilon() > 0 // tiny_ + epsilon() == epsilon() protected static final double tiny_ = Math.sqrt(GeoMath.min); private static final double tol0_ = GeoMath.epsilon; // Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse case // 52.784459512564 0 -52.784459512563990912 179.634407464943777557 // which otherwise failed for Visual Studio 10 (Release and Debug) private static final double tol1_ = 200 * tol0_; private static final double tol2_ = Math.sqrt(tol0_); // Check on bisection interval private static final double tolb_ = tol0_ * tol2_; private static final double xthresh_ = 1000 * tol2_; protected double _a, _f, _f1, _e2, _ep2, _b, _c2; private double _n, _etol2; private double _A3x[], _C3x[], _C4x[]; /** * Constructor for a ellipsoid with *

* @param a equatorial radius (meters). * @param f flattening of ellipsoid. Setting f = 0 gives a sphere. * Negative f gives a prolate ellipsoid. * @exception GeographicErr if a or (1 − f ) a is * not positive. **********************************************************************/ public Geodesic(double a, double f) { _a = a; _f = f; _f1 = 1 - _f; _e2 = _f * (2 - _f); _ep2 = _e2 / GeoMath.sq(_f1); // e2 / (1 - e2) _n = _f / ( 2 - _f); _b = _a * _f1; _c2 = (GeoMath.sq(_a) + GeoMath.sq(_b) * (_e2 == 0 ? 1 : (_e2 > 0 ? GeoMath.atanh(Math.sqrt(_e2)) : Math.atan(Math.sqrt(-_e2))) / Math.sqrt(Math.abs(_e2))))/2; // authalic radius squared // The sig12 threshold for "really short". Using the auxiliary sphere // solution with dnm computed at (bet1 + bet2) / 2, the relative error in // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2. // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a // given f and sig12, the max error occurs for lines near the pole. If // the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error // increases by a factor of 2.) Setting this equal to epsilon gives // sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100) // and max(0.001, abs(f)) stops etol2 getting too large in the nearly // spherical case. _etol2 = 0.1 * tol2_ / Math.sqrt( Math.max(0.001, Math.abs(_f)) * Math.min(1.0, 1 - _f/2) / 2 ); if (!(GeoMath.isfinite(_a) && _a > 0)) throw new GeographicErr("Equatorial radius is not positive"); if (!(GeoMath.isfinite(_b) && _b > 0)) throw new GeographicErr("Polar semi-axis is not positive"); _A3x = new double[nA3x_]; _C3x = new double[nC3x_]; _C4x = new double[nC4x_]; A3coeff(); C3coeff(); C4coeff(); } /** * Solve the direct geodesic problem where the length of the geodesic * is specified in terms of distance. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param s12 distance between point 1 and point 2 (meters); it can be * negative. * @return a {@link GeodesicData} object with the following fields: * lat1, lon1, azi1, lat2, lon2, * azi2, s12, a12. *

* lat1 should be in the range [−90°, 90°]. The values * of lon2 and azi2 returned are in the range [−180°, * 180°). *

* If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing lat = ±(90° − ε), * and taking the limit ε → 0+. An arc length greater that * 180° signifies a geodesic which is not a shortest path. (For a * prolate ellipsoid, an additional condition is necessary for a shortest * path: the longitudinal extent must not exceed of 180°.) **********************************************************************/ public GeodesicData Direct(double lat1, double lon1, double azi1, double s12) { return Direct(lat1, lon1, azi1, false, s12, GeodesicMask.STANDARD); } /** * Solve the direct geodesic problem where the length of the geodesic is * specified in terms of distance and with a subset of the geodesic results * returned. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param s12 distance between point 1 and point 2 (meters); it can be * negative. * @param outmask a bitor'ed combination of {@link GeodesicMask} values * specifying which results should be returned. * @return a {@link GeodesicData} object with the fields specified by * outmask computed. *

* lat1, lon1, azi1, s12, and a12 are * always included in the returned result. The value of lon2 returned * is in the range [−180°, 180°), unless the outmask * includes the {@link GeodesicMask#LONG_UNROLL} flag. **********************************************************************/ public GeodesicData Direct(double lat1, double lon1, double azi1, double s12, int outmask) { return Direct(lat1, lon1, azi1, false, s12, outmask); } /** * Solve the direct geodesic problem where the length of the geodesic * is specified in terms of arc length. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @return a {@link GeodesicData} object with the following fields: * lat1, lon1, azi1, lat2, lon2, * azi2, s12, a12. *

* lat1 should be in the range [−90°, 90°]. The values * of lon2 and azi2 returned are in the range [−180°, * 180°). *

* If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing lat = ±(90° − ε), * and taking the limit ε → 0+. An arc length greater that * 180° signifies a geodesic which is not a shortest path. (For a * prolate ellipsoid, an additional condition is necessary for a shortest * path: the longitudinal extent must not exceed of 180°.) **********************************************************************/ public GeodesicData ArcDirect(double lat1, double lon1, double azi1, double a12) { return Direct(lat1, lon1, azi1, true, a12, GeodesicMask.STANDARD); } /** * Solve the direct geodesic problem where the length of the geodesic is * specified in terms of arc length and with a subset of the geodesic results * returned. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @param outmask a bitor'ed combination of {@link GeodesicMask} values * specifying which results should be returned. * @return a {@link GeodesicData} object with the fields specified by * outmask computed. *

* lat1, lon1, azi1, and a12 are always included * in the returned result. The value of lon2 returned is in the range * [−180°, 180°), unless the outmask includes the {@link * GeodesicMask#LONG_UNROLL} flag. **********************************************************************/ public GeodesicData ArcDirect(double lat1, double lon1, double azi1, double a12, int outmask) { return Direct(lat1, lon1, azi1, true, a12, outmask); } /** * The general direct geodesic problem. {@link #Direct Direct} and * {@link #ArcDirect ArcDirect} are defined in terms of this function. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param arcmode boolean flag determining the meaning of the * s12_a12. * @param s12_a12 if arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param outmask a bitor'ed combination of {@link GeodesicMask} values * specifying which results should be returned. * @return a {@link GeodesicData} object with the fields specified by * outmask computed. *

* The {@link GeodesicMask} values possible for outmask are *

    *
  • * outmask |= {@link GeodesicMask#LATITUDE} for the latitude * lat2; *
  • * outmask |= {@link GeodesicMask#LONGITUDE} for the latitude * lon2; *
  • * outmask |= {@link GeodesicMask#AZIMUTH} for the latitude * azi2; *
  • * outmask |= {@link GeodesicMask#DISTANCE} for the distance * s12; *
  • * outmask |= {@link GeodesicMask#REDUCEDLENGTH} for the reduced * length m12; *
  • * outmask |= {@link GeodesicMask#GEODESICSCALE} for the geodesic * scales M12 and M21; *
  • * outmask |= {@link GeodesicMask#AREA} for the area S12; *
  • * outmask |= {@link GeodesicMask#ALL} for all of the above; *
  • * outmask |= {@link GeodesicMask#LONG_UNROLL}, if set then * lon1 is unchanged and lon2lon1 indicates * how many times and in what sense the geodesic encircles the ellipsoid. * Otherwise lon1 and lon2 are both reduced to the range * [−180°, 180°). *
*

* The function value a12 is always computed and returned and this * equals s12_a12 is arcmode is true. If outmask * includes {@link GeodesicMask#DISTANCE} and arcmode is false, then * s12 = s12_a12. It is not necessary to include {@link * GeodesicMask#DISTANCE_IN} in outmask; this is automatically * included is arcmode is false. **********************************************************************/ public GeodesicData Direct(double lat1, double lon1, double azi1, boolean arcmode, double s12_a12, int outmask) { // Automatically supply DISTANCE_IN if necessary if (!arcmode) outmask |= GeodesicMask.DISTANCE_IN; return new GeodesicLine(this, lat1, lon1, azi1, outmask) . // Note the dot! Position(arcmode, s12_a12, outmask); } /** * Define a {@link GeodesicLine} in terms of the direct geodesic problem * specified in terms of distance with all capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param s12 distance between point 1 and point 2 (meters); it can be * negative. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. *

* lat1 should be in the range [−90°, 90°]. **********************************************************************/ public GeodesicLine DirectLine(double lat1, double lon1, double azi1, double s12) { return DirectLine(lat1, lon1, azi1, s12, GeodesicMask.ALL); } /** * Define a {@link GeodesicLine} in terms of the direct geodesic problem * specified in terms of distance with a subset of the capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param s12 distance between point 1 and point 2 (meters); it can be * negative. * @param caps bitor'ed combination of {@link GeodesicMask} values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * {@link GeodesicLine#Position GeodesicLine.Position}. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. *

* lat1 should be in the range [−90°, 90°]. **********************************************************************/ public GeodesicLine DirectLine(double lat1, double lon1, double azi1, double s12, int caps) { return GenDirectLine(lat1, lon1, azi1, false, s12, caps); } /** * Define a {@link GeodesicLine} in terms of the direct geodesic problem * specified in terms of arc length with all capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. *

* lat1 should be in the range [−90°, 90°]. **********************************************************************/ public GeodesicLine ArcDirectLine(double lat1, double lon1, double azi1, double a12) { return ArcDirectLine(lat1, lon1, azi1, a12, GeodesicMask.ALL); } /** * Define a {@link GeodesicLine} in terms of the direct geodesic problem * specified in terms of arc length with a subset of the capabilities * included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @param caps bitor'ed combination of {@link GeodesicMask} values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * {@link GeodesicLine#Position GeodesicLine.Position}. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. *

* lat1 should be in the range [−90°, 90°]. **********************************************************************/ public GeodesicLine ArcDirectLine(double lat1, double lon1, double azi1, double a12, int caps) { return GenDirectLine(lat1, lon1, azi1, true, a12, caps); } /** * Define a {@link GeodesicLine} in terms of the direct geodesic problem * specified in terms of either distance or arc length with a subset of the * capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param arcmode boolean flag determining the meaning of the s12_a12. * @param s12_a12 if arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param caps bitor'ed combination of {@link GeodesicMask} values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * {@link GeodesicLine#Position GeodesicLine.Position}. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. *

* lat1 should be in the range [−90°, 90°]. **********************************************************************/ public GeodesicLine GenDirectLine(double lat1, double lon1, double azi1, boolean arcmode, double s12_a12, int caps) { azi1 = GeoMath.AngNormalize(azi1); double salp1, calp1; // Guard against underflow in salp0. Also -0 is converted to +0. { Pair p = GeoMath.sincosd(GeoMath.AngRound(azi1)); salp1 = p.first; calp1 = p.second; } // Automatically supply DISTANCE_IN if necessary if (!arcmode) caps |= GeodesicMask.DISTANCE_IN; return new GeodesicLine(this, lat1, lon1, azi1, salp1, calp1, caps, arcmode, s12_a12); } /** * Solve the inverse geodesic problem. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param lat2 latitude of point 2 (degrees). * @param lon2 longitude of point 2 (degrees). * @return a {@link GeodesicData} object with the following fields: * lat1, lon1, azi1, lat2, lon2, * azi2, s12, a12. *

* lat1 and lat2 should be in the range [−90°, * 90°]. The values of azi1 and azi2 returned are in the * range [−180°, 180°). *

* If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing lat = ±(90° − ε), * taking the limit ε → 0+. *

* The solution to the inverse problem is found using Newton's method. If * this fails to converge (this is very unlikely in geodetic applications * but does occur for very eccentric ellipsoids), then the bisection method * is used to refine the solution. **********************************************************************/ public GeodesicData Inverse(double lat1, double lon1, double lat2, double lon2) { return Inverse(lat1, lon1, lat2, lon2, GeodesicMask.STANDARD); } private class InverseData { private GeodesicData g; private double salp1, calp1, salp2, calp2; private InverseData() { g = new GeodesicData(); salp1 = calp1 = salp2 = calp2 = Double.NaN; } } private InverseData InverseInt(double lat1, double lon1, double lat2, double lon2, int outmask) { InverseData result = new InverseData(); GeodesicData r = result.g; // Compute longitude difference (AngDiff does this carefully). Result is // in [-180, 180] but -180 is only for west-going geodesics. 180 is for // east-going and meridional geodesics. r.lat1 = lat1 = GeoMath.LatFix(lat1); r.lat2 = lat2 = GeoMath.LatFix(lat2); // If really close to the equator, treat as on equator. lat1 = GeoMath.AngRound(lat1); lat2 = GeoMath.AngRound(lat2); double lon12, lon12s; { Pair p = GeoMath.AngDiff(lon1, lon2); lon12 = p.first; lon12s = p.second; } if ((outmask & GeodesicMask.LONG_UNROLL) != 0) { r.lon1 = lon1; r.lon2 = (lon1 + lon12) + lon12s; } else { r.lon1 = GeoMath.AngNormalize(lon1); r.lon2 = GeoMath.AngNormalize(lon2); } // Make longitude difference positive. int lonsign = lon12 >= 0 ? 1 : -1; // If very close to being on the same half-meridian, then make it so. lon12 = lonsign * GeoMath.AngRound(lon12); lon12s = GeoMath.AngRound((180 - lon12) - lonsign * lon12s); double lam12 = Math.toRadians(lon12), slam12, clam12; { Pair p = GeoMath.sincosd(lon12 > 90 ? lon12s : lon12); slam12 = p.first; clam12 = (lon12 > 90 ? -1 : 1) * p.second; } // Swap points so that point with higher (abs) latitude is point 1 // If one latitude is a nan, then it becomes lat1. int swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1; if (swapp < 0) { lonsign *= -1; { double t = lat1; lat1 = lat2; lat2 = t; } } // Make lat1 <= 0 int latsign = lat1 < 0 ? 1 : -1; lat1 *= latsign; lat2 *= latsign; // Now we have // // 0 <= lon12 <= 180 // -90 <= lat1 <= 0 // lat1 <= lat2 <= -lat1 // // longsign, swapp, latsign register the transformation to bring the // coordinates to this canonical form. In all cases, 1 means no change was // made. We make these transformations so that there are few cases to // check, e.g., on verifying quadrants in atan2. In addition, this // enforces some symmetries in the results returned. double sbet1, cbet1, sbet2, cbet2, s12x, m12x; s12x = m12x = Double.NaN; { Pair p = GeoMath.sincosd(lat1); sbet1 = _f1 * p.first; cbet1 = p.second; } // Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12 // will be <= 2*tiny for two points at the same pole. { Pair p = GeoMath.norm(sbet1, cbet1); sbet1 = p.first; cbet1 = p.second; } cbet1 = Math.max(tiny_, cbet1); { Pair p = GeoMath.sincosd(lat2); sbet2 = _f1 * p.first; cbet2 = p.second; } // Ensure cbet2 = +epsilon at poles { Pair p = GeoMath.norm(sbet2, cbet2); sbet2 = p.first; cbet2 = p.second; } cbet2 = Math.max(tiny_, cbet2); // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is // a better measure. This logic is used in assigning calp2 in Lambda12. // Sometimes these quantities vanish and in that case we force bet2 = +/- // bet1 exactly. An example where is is necessary is the inverse problem // 48.522876735459 0 -48.52287673545898293 179.599720456223079643 // which failed with Visual Studio 10 (Release and Debug) if (cbet1 < -sbet1) { if (cbet2 == cbet1) sbet2 = sbet2 < 0 ? sbet1 : -sbet1; } else { if (Math.abs(sbet2) == -sbet1) cbet2 = cbet1; } double dn1 = Math.sqrt(1 + _ep2 * GeoMath.sq(sbet1)), dn2 = Math.sqrt(1 + _ep2 * GeoMath.sq(sbet2)); double a12, sig12, calp1, salp1, calp2, salp2; a12 = sig12 = calp1 = salp1 = calp2 = salp2 = Double.NaN; // index zero elements of these arrays are unused double C1a[] = new double[nC1_ + 1]; double C2a[] = new double[nC2_ + 1]; double C3a[] = new double[nC3_]; boolean meridian = lat1 == -90 || slam12 == 0; if (meridian) { // Endpoints are on a single full meridian, so the geodesic might lie on // a meridian. calp1 = clam12; salp1 = slam12; // Head to the target longitude calp2 = 1; salp2 = 0; // At the target we're heading north double // tan(bet) = tan(sig) * cos(alp) ssig1 = sbet1, csig1 = calp1 * cbet1, ssig2 = sbet2, csig2 = calp2 * cbet2; // sig12 = sig2 - sig1 sig12 = Math.atan2(Math.max(0.0, csig1 * ssig2 - ssig1 * csig2), csig1 * csig2 + ssig1 * ssig2); { LengthsV v = Lengths(_n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, outmask | GeodesicMask.DISTANCE | GeodesicMask.REDUCEDLENGTH, C1a, C2a); s12x = v.s12b; m12x = v.m12b; if ((outmask & GeodesicMask.GEODESICSCALE) != 0) { r.M12 = v.M12; r.M21 = v.M21; } } // Add the check for sig12 since zero length geodesics might yield m12 < // 0. Test case was // // echo 20.001 0 20.001 0 | GeodSolve -i // // In fact, we will have sig12 > pi/2 for meridional geodesic which is // not a shortest path. if (sig12 < 1 || m12x >= 0) { // Need at least 2, to handle 90 0 90 180 if (sig12 < 3 * tiny_) sig12 = m12x = s12x = 0; m12x *= _b; s12x *= _b; a12 = Math.toDegrees(sig12); } else // m12 < 0, i.e., prolate and too close to anti-podal meridian = false; } double omg12 = Double.NaN, somg12 = 2, comg12 = Double.NaN; if (!meridian && sbet1 == 0 && // and sbet2 == 0 // Mimic the way Lambda12 works with calp1 = 0 (_f <= 0 || lon12s >= _f * 180)) { // Geodesic runs along equator calp1 = calp2 = 0; salp1 = salp2 = 1; s12x = _a * lam12; sig12 = omg12 = lam12 / _f1; m12x = _b * Math.sin(sig12); if ((outmask & GeodesicMask.GEODESICSCALE) != 0) r.M12 = r.M21 = Math.cos(sig12); a12 = lon12 / _f1; } else if (!meridian) { // Now point1 and point2 belong within a hemisphere bounded by a // meridian and geodesic is neither meridional or equatorial. // Figure a starting point for Newton's method double dnm; { InverseStartV v = InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2, lam12, slam12, clam12, C1a, C2a); sig12 = v.sig12; salp1 = v.salp1; calp1 = v.calp1; salp2 = v.salp2; calp2 = v.calp2; dnm = v.dnm; } if (sig12 >= 0) { // Short lines (InverseStart sets salp2, calp2, dnm) s12x = sig12 * _b * dnm; m12x = GeoMath.sq(dnm) * _b * Math.sin(sig12 / dnm); if ((outmask & GeodesicMask.GEODESICSCALE) != 0) r.M12 = r.M21 = Math.cos(sig12 / dnm); a12 = Math.toDegrees(sig12); omg12 = lam12 / (_f1 * dnm); } else { // Newton's method. This is a straightforward solution of f(alp1) = // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one // root in the interval (0, pi) and its derivative is positive at the // root. Thus f(alp) is positive for alp > alp1 and negative for alp < // alp1. During the course of the iteration, a range (alp1a, alp1b) is // maintained which brackets the root and with each evaluation of // f(alp) the range is shrunk, if possible. Newton's method is // restarted whenever the derivative of f is negative (because the new // value of alp1 is then further from the solution) or if the new // estimate of alp1 lies outside (0,pi); in this case, the new starting // guess is taken to be (alp1a + alp1b) / 2. double ssig1, csig1, ssig2, csig2, eps, domg12; ssig1 = csig1 = ssig2 = csig2 = eps = domg12 = Double.NaN; int numit = 0; // Bracketing range double salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1; for (boolean tripn = false, tripb = false; numit < maxit2_; ++numit) { // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16 // WGS84 and random input: mean = 2.85, sd = 0.60 double v, dv; { Lambda12V w = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, slam12, clam12, numit < maxit1_, C1a, C2a, C3a); v = w.lam12; salp2 = w.salp2; calp2 = w.calp2; sig12 = w.sig12; ssig1 = w.ssig1; csig1 = w.csig1; ssig2 = w.ssig2; csig2 = w.csig2; eps = w.eps; domg12 = w.domg12; dv = w.dlam12; } // 2 * tol0 is approximately 1 ulp for a number in [0, pi]. // Reversed test to allow escape with NaNs if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_)) break; // Update bracketing values if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b)) { salp1b = salp1; calp1b = calp1; } else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a)) { salp1a = salp1; calp1a = calp1; } if (numit < maxit1_ && dv > 0) { double dalp1 = -v/dv; double sdalp1 = Math.sin(dalp1), cdalp1 = Math.cos(dalp1), nsalp1 = salp1 * cdalp1 + calp1 * sdalp1; if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) { calp1 = calp1 * cdalp1 - salp1 * sdalp1; salp1 = nsalp1; { Pair p = GeoMath.norm(salp1, calp1); salp1 = p.first; calp1 = p.second; } // In some regimes we don't get quadratic convergence because // slope -> 0. So use convergence conditions based on epsilon // instead of sqrt(epsilon). tripn = Math.abs(v) <= 16 * tol0_; continue; } } // Either dv was not postive or updated value was outside legal // range. Use the midpoint of the bracket as the next estimate. // This mechanism is not needed for the WGS84 ellipsoid, but it does // catch problems with more eccentric ellipsoids. Its efficacy is // such for the WGS84 test set with the starting guess set to alp1 = // 90deg: // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24 // WGS84 and random input: mean = 4.74, sd = 0.99 salp1 = (salp1a + salp1b)/2; calp1 = (calp1a + calp1b)/2; { Pair p = GeoMath.norm(salp1, calp1); salp1 = p.first; calp1 = p.second; } tripn = false; tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ || Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_); } { // Ensure that the reduced length and geodesic scale are computed in // a "canonical" way, with the I2 integral. int lengthmask = outmask | ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0 ? GeodesicMask.DISTANCE : GeodesicMask.NONE); LengthsV v = Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, lengthmask, C1a, C2a); s12x = v.s12b; m12x = v.m12b; if ((outmask & GeodesicMask.GEODESICSCALE) != 0) { r.M12 = v.M12; r.M21 = v.M21; } } m12x *= _b; s12x *= _b; a12 = Math.toDegrees(sig12); if ((outmask & GeodesicMask.AREA) != 0) { // omg12 = lam12 - domg12 double sdomg12 = Math.sin(domg12), cdomg12 = Math.cos(domg12); somg12 = slam12 * cdomg12 - clam12 * sdomg12; comg12 = clam12 * cdomg12 + slam12 * sdomg12; } } } if ((outmask & GeodesicMask.DISTANCE) != 0) r.s12 = 0 + s12x; // Convert -0 to 0 if ((outmask & GeodesicMask.REDUCEDLENGTH) != 0) r.m12 = 0 + m12x; // Convert -0 to 0 if ((outmask & GeodesicMask.AREA) != 0) { double // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) salp0 = salp1 * cbet1, calp0 = GeoMath.hypot(calp1, salp1 * sbet1); // calp0 > 0 double alp12; if (calp0 != 0 && salp0 != 0) { double // From Lambda12: tan(bet) = tan(sig) * cos(alp) ssig1 = sbet1, csig1 = calp1 * cbet1, ssig2 = sbet2, csig2 = calp2 * cbet2, k2 = GeoMath.sq(calp0) * _ep2, eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2), // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). A4 = GeoMath.sq(_a) * calp0 * salp0 * _e2; { Pair p = GeoMath.norm(ssig1, csig1); ssig1 = p.first; csig1 = p.second; } { Pair p = GeoMath.norm(ssig2, csig2); ssig2 = p.first; csig2 = p.second; } double C4a[] = new double[nC4_]; C4f(eps, C4a); double B41 = SinCosSeries(false, ssig1, csig1, C4a), B42 = SinCosSeries(false, ssig2, csig2, C4a); r.S12 = A4 * (B42 - B41); } else // Avoid problems with indeterminate sig1, sig2 on equator r.S12 = 0; if (!meridian && somg12 > 1) { somg12 = Math.sin(omg12); comg12 = Math.cos(omg12); } if (!meridian && comg12 > -0.7071 && // Long difference not too big sbet2 - sbet1 < 1.75) { // Lat difference not too big // Use tan(Gamma/2) = tan(omg12/2) // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2)) // with tan(x/2) = sin(x)/(1+cos(x)) double domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2; alp12 = 2 * Math.atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ), domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) ); } else { // alp12 = alp2 - alp1, used in atan2 so no need to normalize double salp12 = salp2 * calp1 - calp2 * salp1, calp12 = calp2 * calp1 + salp2 * salp1; // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz // salp12 = -0 and alp12 = -180. However this depends on the sign // being attached to 0 correctly. The following ensures the correct // behavior. if (salp12 == 0 && calp12 < 0) { salp12 = tiny_ * calp1; calp12 = -1; } alp12 = Math.atan2(salp12, calp12); } r.S12 += _c2 * alp12; r.S12 *= swapp * lonsign * latsign; // Convert -0 to 0 r.S12 += 0; } // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. if (swapp < 0) { { double t = salp1; salp1 = salp2; salp2 = t; } { double t = calp1; calp1 = calp2; calp2 = t; } if ((outmask & GeodesicMask.GEODESICSCALE) != 0) { double t = r.M12; r.M12 = r.M21; r.M21 = t; } } salp1 *= swapp * lonsign; calp1 *= swapp * latsign; salp2 *= swapp * lonsign; calp2 *= swapp * latsign; // Returned value in [0, 180] r.a12 = a12; result.salp1 = salp1; result.calp1 = calp1; result.salp2 = salp2; result.calp2 = calp2; return result; } /** * Solve the inverse geodesic problem with a subset of the geodesic results * returned. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param lat2 latitude of point 2 (degrees). * @param lon2 longitude of point 2 (degrees). * @param outmask a bitor'ed combination of {@link GeodesicMask} values * specifying which results should be returned. * @return a {@link GeodesicData} object with the fields specified by * outmask computed. *

* The {@link GeodesicMask} values possible for outmask are *

    *
  • * outmask |= {@link GeodesicMask#DISTANCE} for the distance * s12; *
  • * outmask |= {@link GeodesicMask#AZIMUTH} for the latitude * azi2; *
  • * outmask |= {@link GeodesicMask#REDUCEDLENGTH} for the reduced * length m12; *
  • * outmask |= {@link GeodesicMask#GEODESICSCALE} for the geodesic * scales M12 and M21; *
  • * outmask |= {@link GeodesicMask#AREA} for the area S12; *
  • * outmask |= {@link GeodesicMask#ALL} for all of the above. *
  • * outmask |= {@link GeodesicMask#LONG_UNROLL}, if set then * lon1 is unchanged and lon2lon1 indicates * whether the geodesic is east going or west going. Otherwise lon1 * and lon2 are both reduced to the range [−180°, * 180°). *
*

* lat1, lon1, lat2, lon2, and a12 are * always included in the returned result. **********************************************************************/ public GeodesicData Inverse(double lat1, double lon1, double lat2, double lon2, int outmask) { outmask &= GeodesicMask.OUT_MASK; InverseData result = InverseInt(lat1, lon1, lat2, lon2, outmask); GeodesicData r = result.g; if ((outmask & GeodesicMask.AZIMUTH) != 0) { r.azi1 = GeoMath.atan2d(result.salp1, result.calp1); r.azi2 = GeoMath.atan2d(result.salp2, result.calp2); } return r; } /** * Define a {@link GeodesicLine} in terms of the inverse geodesic problem * with all capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param lat2 latitude of point 2 (degrees). * @param lon2 longitude of point 2 (degrees). * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the inverse geodesic problem. *

* lat1 and lat2 should be in the range [−90°, * 90°]. **********************************************************************/ public GeodesicLine InverseLine(double lat1, double lon1, double lat2, double lon2) { return InverseLine(lat1, lon1, lat2, lon2, GeodesicMask.ALL); } /** * Define a {@link GeodesicLine} in terms of the inverse geodesic problem * with a subset of the capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param lat2 latitude of point 2 (degrees). * @param lon2 longitude of point 2 (degrees). * @param caps bitor'ed combination of {@link GeodesicMask} values specifying * the capabilities the GeodesicLine object should possess, i.e., which * quantities can be returned in calls to * {@link GeodesicLine#Position GeodesicLine.Position}. * @return a {@link GeodesicLine} object. *

* This function sets point 3 of the GeodesicLine to correspond to point 2 * of the inverse geodesic problem. *

* lat1 and lat2 should be in the range [−90°, * 90°]. **********************************************************************/ public GeodesicLine InverseLine(double lat1, double lon1, double lat2, double lon2, int caps) { InverseData result = InverseInt(lat1, lon1, lat2, lon2, 0); double salp1 = result.salp1, calp1 = result.calp1, azi1 = GeoMath.atan2d(salp1, calp1), a12 = result.g.a12; // Ensure that a12 can be converted to a distance if ((caps & (GeodesicMask.OUT_MASK & GeodesicMask.DISTANCE_IN)) != 0) caps |= GeodesicMask.DISTANCE; return new GeodesicLine(this, lat1, lon1, azi1, salp1, calp1, caps, true, a12); } /** * Set up to compute several points on a single geodesic with all * capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @return a {@link GeodesicLine} object. *

* lat1 should be in the range [−90°, 90°]. The full * set of capabilities is included. *

* If the point is at a pole, the azimuth is defined by keeping the * lon1 fixed, writing lat1 = ±(90 − ε), * taking the limit ε → 0+. **********************************************************************/ public GeodesicLine Line(double lat1, double lon1, double azi1) { return Line(lat1, lon1, azi1, GeodesicMask.ALL); } /** * Set up to compute several points on a single geodesic with a subset of the * capabilities included. *

* @param lat1 latitude of point 1 (degrees). * @param lon1 longitude of point 1 (degrees). * @param azi1 azimuth at point 1 (degrees). * @param caps bitor'ed combination of {@link GeodesicMask} values specifying * the capabilities the {@link GeodesicLine} object should possess, i.e., * which quantities can be returned in calls to {@link * GeodesicLine#Position GeodesicLine.Position}. * @return a {@link GeodesicLine} object. *

* The {@link GeodesicMask} values are *

    *
  • * caps |= {@link GeodesicMask#LATITUDE} for the latitude * lat2; this is added automatically; *
  • * caps |= {@link GeodesicMask#LONGITUDE} for the latitude * lon2; *
  • * caps |= {@link GeodesicMask#AZIMUTH} for the azimuth azi2; * this is added automatically; *
  • * caps |= {@link GeodesicMask#DISTANCE} for the distance * s12; *
  • * caps |= {@link GeodesicMask#REDUCEDLENGTH} for the reduced length * m12; *
  • * caps |= {@link GeodesicMask#GEODESICSCALE} for the geodesic * scales M12 and M21; *
  • * caps |= {@link GeodesicMask#AREA} for the area S12; *
  • * caps |= {@link GeodesicMask#DISTANCE_IN} permits the length of * the geodesic to be given in terms of s12; without this capability * the length can only be specified in terms of arc length; *
  • * caps |= {@link GeodesicMask#ALL} for all of the above. *
*

* If the point is at a pole, the azimuth is defined by keeping lon1 * fixed, writing lat1 = ±(90 − ε), and taking * the limit ε → 0+. **********************************************************************/ public GeodesicLine Line(double lat1, double lon1, double azi1, int caps) { return new GeodesicLine(this, lat1, lon1, azi1, caps); } /** * @return a the equatorial radius of the ellipsoid (meters). This is * the value used in the constructor. **********************************************************************/ public double MajorRadius() { return _a; } /** * @return f the flattening of the ellipsoid. This is the * value used in the constructor. **********************************************************************/ public double Flattening() { return _f; } /** * @return total area of ellipsoid in meters2. The area of a * polygon encircling a pole can be found by adding EllipsoidArea()/2 to * the sum of S12 for each side of the polygon. **********************************************************************/ public double EllipsoidArea() { return 4 * Math.PI * _c2; } /** * A global instantiation of Geodesic with the parameters for the WGS84 * ellipsoid. **********************************************************************/ public static final Geodesic WGS84 = new Geodesic(Constants.WGS84_a, Constants.WGS84_f); // This is a reformulation of the geodesic problem. The notation is as // follows: // - at a general point (no suffix or 1 or 2 as suffix) // - phi = latitude // - beta = latitude on auxiliary sphere // - omega = longitude on auxiliary sphere // - lambda = longitude // - alpha = azimuth of great circle // - sigma = arc length along great circle // - s = distance // - tau = scaled distance (= sigma at multiples of pi/2) // - at northwards equator crossing // - beta = phi = 0 // - omega = lambda = 0 // - alpha = alpha0 // - sigma = s = 0 // - a 12 suffix means a difference, e.g., s12 = s2 - s1. // - s and c prefixes mean sin and cos protected static double SinCosSeries(boolean sinp, double sinx, double cosx, double c[]) { // Evaluate // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) : // sum(c[i] * cos((2*i+1) * x), i, 0, n-1) // using Clenshaw summation. N.B. c[0] is unused for sin series // Approx operation count = (n + 5) mult and (2 * n + 2) add int k = c.length, // Point to one beyond last element n = k - (sinp ? 1 : 0); double ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x) y0 = (n & 1) != 0 ? c[--k] : 0, y1 = 0; // accumulators for sum // Now n is even n /= 2; while (n-- != 0) { // Unroll loop x 2, so accumulators return to their original role y1 = ar * y0 - y1 + c[--k]; y0 = ar * y1 - y0 + c[--k]; } return sinp ? 2 * sinx * cosx * y0 // sin(2 * x) * y0 : cosx * (y0 - y1); // cos(x) * (y0 - y1) } private class LengthsV { private double s12b, m12b, m0, M12, M21; private LengthsV() { s12b = m12b = m0 = M12 = M21 = Double.NaN; } } private LengthsV Lengths(double eps, double sig12, double ssig1, double csig1, double dn1, double ssig2, double csig2, double dn2, double cbet1, double cbet2, int outmask, // Scratch areas of the right size double C1a[], double C2a[]) { // Return m12b = (reduced length)/_b; also calculate s12b = distance/_b, // and m0 = coefficient of secular term in expression for reduced length. outmask &= GeodesicMask.OUT_MASK; LengthsV v = new LengthsV(); // To hold s12b, m12b, m0, M12, M21; double m0x = 0, J12 = 0, A1 = 0, A2 = 0; if ((outmask & (GeodesicMask.DISTANCE | GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { A1 = A1m1f(eps); C1f(eps, C1a); if ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { A2 = A2m1f(eps); C2f(eps, C2a); m0x = A1 - A2; A2 = 1 + A2; } A1 = 1 + A1; } if ((outmask & GeodesicMask.DISTANCE) != 0) { double B1 = SinCosSeries(true, ssig2, csig2, C1a) - SinCosSeries(true, ssig1, csig1, C1a); // Missing a factor of _b v.s12b = A1 * (sig12 + B1); if ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { double B2 = SinCosSeries(true, ssig2, csig2, C2a) - SinCosSeries(true, ssig1, csig1, C2a); J12 = m0x * sig12 + (A1 * B1 - A2 * B2); } } else if ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { // Assume here that nC1_ >= nC2_ for (int l = 1; l <= nC2_; ++l) C2a[l] = A1 * C1a[l] - A2 * C2a[l]; J12 = m0x * sig12 + (SinCosSeries(true, ssig2, csig2, C2a) - SinCosSeries(true, ssig1, csig1, C2a)); } if ((outmask & GeodesicMask.REDUCEDLENGTH) != 0) { v.m0 = m0x; // Missing a factor of _b. // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure // accurate cancellation in the case of coincident points. v.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) - csig1 * csig2 * J12; } if ((outmask & GeodesicMask.GEODESICSCALE) != 0) { double csig12 = csig1 * csig2 + ssig1 * ssig2; double t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2); v.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1; v.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2; } return v; } private static double Astroid(double x, double y) { // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k. // This solution is adapted from Geocentric::Reverse. double k; double p = GeoMath.sq(x), q = GeoMath.sq(y), r = (p + q - 1) / 6; if ( !(q == 0 && r <= 0) ) { double // Avoid possible division by zero when r = 0 by multiplying equations // for s and t by r^3 and r, resp. S = p * q / 4, // S = r^3 * s r2 = GeoMath.sq(r), r3 = r * r2, // The discriminant of the quadratic equation for T3. This is zero on // the evolute curve p^(1/3)+q^(1/3) = 1 disc = S * (S + 2 * r3); double u = r; if (disc >= 0) { double T3 = S + r3; // Pick the sign on the sqrt to maximize abs(T3). This minimizes loss // of precision due to cancellation. The result is unchanged because // of the way the T is used in definition of u. T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc); // T3 = (r * t)^3 // N.B. cbrt always returns the double root. cbrt(-8) = -2. double T = GeoMath.cbrt(T3); // T = r * t // T can be zero; but then r2 / T -> 0. u += T + (T != 0 ? r2 / T : 0); } else { // T is complex, but the way u is defined the result is double. double ang = Math.atan2(Math.sqrt(-disc), -(S + r3)); // There are three possible cube roots. We choose the root which // avoids cancellation. Note that disc < 0 implies that r < 0. u += 2 * r * Math.cos(ang / 3); } double v = Math.sqrt(GeoMath.sq(u) + q), // guaranteed positive // Avoid loss of accuracy when u < 0. uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive w = (uv - q) / (2 * v); // positive? // Rearrange expression for k to avoid loss of accuracy due to // subtraction. Division by 0 not possible because uv > 0, w >= 0. k = uv / (Math.sqrt(uv + GeoMath.sq(w)) + w); // guaranteed positive } else { // q == 0 && r <= 0 // y = 0 with |x| <= 1. Handle this case directly. // for y small, positive root is k = abs(y)/sqrt(1-x^2) k = 0; } return k; } private class InverseStartV { private double sig12, salp1, calp1, // Only updated if return val >= 0 salp2, calp2, // Only updated for short lines dnm; private InverseStartV() { sig12 = salp1 = calp1 = salp2 = calp2 = dnm = Double.NaN; } } private InverseStartV InverseStart(double sbet1, double cbet1, double dn1, double sbet2, double cbet2, double dn2, double lam12, double slam12, double clam12, // Scratch areas of the right size double C1a[], double C2a[]) { // Return a starting point for Newton's method in salp1 and calp1 (function // value is -1). If Newton's method doesn't need to be used, return also // salp2 and calp2 and function value is sig12. // To hold sig12, salp1, calp1, salp2, calp2, dnm. InverseStartV w = new InverseStartV(); w.sig12 = -1; // Return value double // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] sbet12 = sbet2 * cbet1 - cbet2 * sbet1, cbet12 = cbet2 * cbet1 + sbet2 * sbet1; double sbet12a = sbet2 * cbet1 + cbet2 * sbet1; boolean shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5; double somg12, comg12; if (shortline) { double sbetm2 = GeoMath.sq(sbet1 + sbet2); // sin((bet1+bet2)/2)^2 // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) sbetm2 /= sbetm2 + GeoMath.sq(cbet1 + cbet2); w.dnm = Math.sqrt(1 + _ep2 * sbetm2); double omg12 = lam12 / (_f1 * w.dnm); somg12 = Math.sin(omg12); comg12 = Math.cos(omg12); } else { somg12 = slam12; comg12 = clam12; } w.salp1 = cbet2 * somg12; w.calp1 = comg12 >= 0 ? sbet12 + cbet2 * sbet1 * GeoMath.sq(somg12) / (1 + comg12) : sbet12a - cbet2 * sbet1 * GeoMath.sq(somg12) / (1 - comg12); double ssig12 = GeoMath.hypot(w.salp1, w.calp1), csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12; if (shortline && ssig12 < _etol2) { // really short lines w.salp2 = cbet1 * somg12; w.calp2 = sbet12 - cbet1 * sbet2 * (comg12 >= 0 ? GeoMath.sq(somg12) / (1 + comg12) : 1 - comg12); { Pair p = GeoMath.norm(w.salp2, w.calp2); w.salp2 = p.first; w.calp2 = p.second; } // Set return value w.sig12 = Math.atan2(ssig12, csig12); } else if (Math.abs(_n) > 0.1 || // Skip astroid calc if too eccentric csig12 >= 0 || ssig12 >= 6 * Math.abs(_n) * Math.PI * GeoMath.sq(cbet1)) { // Nothing to do, zeroth order spherical approximation is OK } else { // Scale lam12 and bet2 to x, y coordinate system where antipodal point // is at origin and singular point is at y = 0, x = -1. double y, lamscale, betscale; // In C++ volatile declaration needed to fix inverse case // 56.320923501171 0 -56.320923501171 179.664747671772880215 // which otherwise fails with g++ 4.4.4 x86 -O3 double x; double lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi if (_f >= 0) { // In fact f == 0 does not get here // x = dlong, y = dlat { double k2 = GeoMath.sq(sbet1) * _ep2, eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2); lamscale = _f * cbet1 * A3f(eps) * Math.PI; } betscale = lamscale * cbet1; x = lam12x / lamscale; y = sbet12a / betscale; } else { // _f < 0 // x = dlat, y = dlong double cbet12a = cbet2 * cbet1 - sbet2 * sbet1, bet12a = Math.atan2(sbet12a, cbet12a); double m12b, m0; // In the case of lon12 = 180, this repeats a calculation made in // Inverse. LengthsV v = Lengths(_n, Math.PI + bet12a, sbet1, -cbet1, dn1, sbet2, cbet2, dn2, cbet1, cbet2, GeodesicMask.REDUCEDLENGTH, C1a, C2a); m12b = v.m12b; m0 = v.m0; x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI); betscale = x < -0.01 ? sbet12a / x : -_f * GeoMath.sq(cbet1) * Math.PI; lamscale = betscale / cbet1; y = lam12x / lamscale; } if (y > -tol1_ && x > -1 - xthresh_) { // strip near cut if (_f >= 0) { w.salp1 = Math.min(1.0, -x); w.calp1 = - Math.sqrt(1 - GeoMath.sq(w.salp1)); } else { w.calp1 = Math.max(x > -tol1_ ? 0.0 : -1.0, x); w.salp1 = Math.sqrt(1 - GeoMath.sq(w.calp1)); } } else { // Estimate alp1, by solving the astroid problem. // // Could estimate alpha1 = theta + pi/2, directly, i.e., // calp1 = y/k; salp1 = -x/(1+k); for _f >= 0 // calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check) // // However, it's better to estimate omg12 from astroid and use // spherical formula to compute alp1. This reduces the mean number of // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12 // (min 0 max 5). The changes in the number of iterations are as // follows: // // change percent // 1 5 // 0 78 // -1 16 // -2 0.6 // -3 0.04 // -4 0.002 // // The histogram of iterations is (m = number of iterations estimating // alp1 directly, n = number of iterations estimating via omg12, total // number of trials = 148605): // // iter m n // 0 148 186 // 1 13046 13845 // 2 93315 102225 // 3 36189 32341 // 4 5396 7 // 5 455 1 // 6 56 0 // // Because omg12 is near pi, estimate work with omg12a = pi - omg12 double k = Astroid(x, y); double omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k ); somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a); // Update spherical estimate of alp1 using omg12 instead of lam12 w.salp1 = cbet2 * somg12; w.calp1 = sbet12a - cbet2 * sbet1 * GeoMath.sq(somg12) / (1 - comg12); } } // Sanity check on starting guess. Backwards check allows NaN through. if (!(w.salp1 <= 0)) { Pair p = GeoMath.norm(w.salp1, w.calp1); w.salp1 = p.first; w.calp1 = p.second; } else { w.salp1 = 1; w.calp1 = 0; } return w; } private class Lambda12V { private double lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps, domg12, dlam12; private Lambda12V() { lam12 = salp2 = calp2 = sig12 = ssig1 = csig1 = ssig2 = csig2 = eps = domg12 = dlam12 = Double.NaN; } } private Lambda12V Lambda12(double sbet1, double cbet1, double dn1, double sbet2, double cbet2, double dn2, double salp1, double calp1, double slam120, double clam120, boolean diffp, // Scratch areas of the right size double C1a[], double C2a[], double C3a[]) { // Object to hold lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, // eps, domg12, dlam12; Lambda12V w = new Lambda12V(); if (sbet1 == 0 && calp1 == 0) // Break degeneracy of equatorial line. This case has already been // handled. calp1 = -tiny_; double // sin(alp1) * cos(bet1) = sin(alp0) salp0 = salp1 * cbet1, calp0 = GeoMath.hypot(calp1, salp1 * sbet1); // calp0 > 0 double somg1, comg1, somg2, comg2, somg12, comg12; // tan(bet1) = tan(sig1) * cos(alp1) // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) w.ssig1 = sbet1; somg1 = salp0 * sbet1; w.csig1 = comg1 = calp1 * cbet1; { Pair p = GeoMath.norm(w.ssig1, w.csig1); w.ssig1 = p.first; w.csig1 = p.second; } // GeoMath.norm(somg1, comg1); -- don't need to normalize! // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful // about this case, since this can yield singularities in the Newton // iteration. // sin(alp2) * cos(bet2) = sin(alp0) w.salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1; // calp2 = sqrt(1 - sq(salp2)) // = sqrt(sq(calp0) - sq(sbet2)) / cbet2 // and subst for calp0 and rearrange to give (choose positive sqrt // to give alp2 in [0, pi/2]). w.calp2 = cbet2 != cbet1 || Math.abs(sbet2) != -sbet1 ? Math.sqrt(GeoMath.sq(calp1 * cbet1) + (cbet1 < -sbet1 ? (cbet2 - cbet1) * (cbet1 + cbet2) : (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 : Math.abs(calp1); // tan(bet2) = tan(sig2) * cos(alp2) // tan(omg2) = sin(alp0) * tan(sig2). w.ssig2 = sbet2; somg2 = salp0 * sbet2; w.csig2 = comg2 = w.calp2 * cbet2; { Pair p = GeoMath.norm(w.ssig2, w.csig2); w.ssig2 = p.first; w.csig2 = p.second; } // GeoMath.norm(somg2, comg2); -- don't need to normalize! // sig12 = sig2 - sig1, limit to [0, pi] w.sig12 = Math.atan2(Math.max(0.0, w.csig1 * w.ssig2 - w.ssig1 * w.csig2), w.csig1 * w.csig2 + w.ssig1 * w.ssig2); // omg12 = omg2 - omg1, limit to [0, pi] somg12 = Math.max(0.0, comg1 * somg2 - somg1 * comg2); comg12 = comg1 * comg2 + somg1 * somg2; // eta = omg12 - lam120 double eta = Math.atan2(somg12 * clam120 - comg12 * slam120, comg12 * clam120 + somg12 * slam120); double B312; double k2 = GeoMath.sq(calp0) * _ep2; w.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2); C3f(w.eps, C3a); B312 = (SinCosSeries(true, w.ssig2, w.csig2, C3a) - SinCosSeries(true, w.ssig1, w.csig1, C3a)); w.domg12 = -_f * A3f(w.eps) * salp0 * (w.sig12 + B312); w.lam12 = eta + w.domg12; if (diffp) { if (w.calp2 == 0) w.dlam12 = - 2 * _f1 * dn1 / sbet1; else { LengthsV v = Lengths(w.eps, w.sig12, w.ssig1, w.csig1, dn1, w.ssig2, w.csig2, dn2, cbet1, cbet2, GeodesicMask.REDUCEDLENGTH, C1a, C2a); w.dlam12 = v.m12b; w.dlam12 *= _f1 / (w.calp2 * cbet2); } } return w; } protected double A3f(double eps) { // Evaluate A3 return GeoMath.polyval(nA3_ - 1, _A3x, 0, eps); } protected void C3f(double eps, double c[]) { // Evaluate C3 coeffs // Elements c[1] thru c[nC3_ - 1] are set double mult = 1; int o = 0; for (int l = 1; l < nC3_; ++l) { // l is index of C3[l] int m = nC3_ - l - 1; // order of polynomial in eps mult *= eps; c[l] = mult * GeoMath.polyval(m, _C3x, o, eps); o += m + 1; } } protected void C4f(double eps, double c[]) { // Evaluate C4 coeffs // Elements c[0] thru c[nC4_ - 1] are set double mult = 1; int o = 0; for (int l = 0; l < nC4_; ++l) { // l is index of C4[l] int m = nC4_ - l - 1; // order of polynomial in eps c[l] = mult * GeoMath.polyval(m, _C4x, o, eps); o += m + 1; mult *= eps; } } // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 protected static double A1m1f(double eps) { final double coeff[] = { // (1-eps)*A1-1, polynomial in eps2 of order 3 1, 4, 64, 0, 256, }; int m = nA1_/2; double t = GeoMath.polyval(m, coeff, 0, GeoMath.sq(eps)) / coeff[m + 1]; return (t + eps) / (1 - eps); } // The coefficients C1[l] in the Fourier expansion of B1 protected static void C1f(double eps, double c[]) { final double coeff[] = { // C1[1]/eps^1, polynomial in eps2 of order 2 -1, 6, -16, 32, // C1[2]/eps^2, polynomial in eps2 of order 2 -9, 64, -128, 2048, // C1[3]/eps^3, polynomial in eps2 of order 1 9, -16, 768, // C1[4]/eps^4, polynomial in eps2 of order 1 3, -5, 512, // C1[5]/eps^5, polynomial in eps2 of order 0 -7, 1280, // C1[6]/eps^6, polynomial in eps2 of order 0 -7, 2048, }; double eps2 = GeoMath.sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC1_; ++l) { // l is index of C1p[l] int m = (nC1_ - l) / 2; // order of polynomial in eps^2 c[l] = d * GeoMath.polyval(m, coeff, o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } } // The coefficients C1p[l] in the Fourier expansion of B1p protected static void C1pf(double eps, double c[]) { final double coeff[] = { // C1p[1]/eps^1, polynomial in eps2 of order 2 205, -432, 768, 1536, // C1p[2]/eps^2, polynomial in eps2 of order 2 4005, -4736, 3840, 12288, // C1p[3]/eps^3, polynomial in eps2 of order 1 -225, 116, 384, // C1p[4]/eps^4, polynomial in eps2 of order 1 -7173, 2695, 7680, // C1p[5]/eps^5, polynomial in eps2 of order 0 3467, 7680, // C1p[6]/eps^6, polynomial in eps2 of order 0 38081, 61440, }; double eps2 = GeoMath.sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC1p_; ++l) { // l is index of C1p[l] int m = (nC1p_ - l) / 2; // order of polynomial in eps^2 c[l] = d * GeoMath.polyval(m, coeff, o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } } // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 protected static double A2m1f(double eps) { final double coeff[] = { // (eps+1)*A2-1, polynomial in eps2 of order 3 -11, -28, -192, 0, 256, }; int m = nA2_/2; double t = GeoMath.polyval(m, coeff, 0, GeoMath.sq(eps)) / coeff[m + 1]; return (t - eps) / (1 + eps); } // The coefficients C2[l] in the Fourier expansion of B2 protected static void C2f(double eps, double c[]) { final double coeff[] = { // C2[1]/eps^1, polynomial in eps2 of order 2 1, 2, 16, 32, // C2[2]/eps^2, polynomial in eps2 of order 2 35, 64, 384, 2048, // C2[3]/eps^3, polynomial in eps2 of order 1 15, 80, 768, // C2[4]/eps^4, polynomial in eps2 of order 1 7, 35, 512, // C2[5]/eps^5, polynomial in eps2 of order 0 63, 1280, // C2[6]/eps^6, polynomial in eps2 of order 0 77, 2048, }; double eps2 = GeoMath.sq(eps), d = eps; int o = 0; for (int l = 1; l <= nC2_; ++l) { // l is index of C2[l] int m = (nC2_ - l) / 2; // order of polynomial in eps^2 c[l] = d * GeoMath.polyval(m, coeff, o, eps2) / coeff[o + m + 1]; o += m + 2; d *= eps; } } // The scale factor A3 = mean value of (d/dsigma)I3 protected void A3coeff() { final double coeff[] = { // A3, coeff of eps^5, polynomial in n of order 0 -3, 128, // A3, coeff of eps^4, polynomial in n of order 1 -2, -3, 64, // A3, coeff of eps^3, polynomial in n of order 2 -1, -3, -1, 16, // A3, coeff of eps^2, polynomial in n of order 2 3, -1, -2, 8, // A3, coeff of eps^1, polynomial in n of order 1 1, -1, 2, // A3, coeff of eps^0, polynomial in n of order 0 1, 1, }; int o = 0, k = 0; for (int j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j int m = Math.min(nA3_ - j - 1, j); // order of polynomial in n _A3x[k++] = GeoMath.polyval(m, coeff, o, _n) / coeff[o + m + 1]; o += m + 2; } } // The coefficients C3[l] in the Fourier expansion of B3 protected void C3coeff() { final double coeff[] = { // C3[1], coeff of eps^5, polynomial in n of order 0 3, 128, // C3[1], coeff of eps^4, polynomial in n of order 1 2, 5, 128, // C3[1], coeff of eps^3, polynomial in n of order 2 -1, 3, 3, 64, // C3[1], coeff of eps^2, polynomial in n of order 2 -1, 0, 1, 8, // C3[1], coeff of eps^1, polynomial in n of order 1 -1, 1, 4, // C3[2], coeff of eps^5, polynomial in n of order 0 5, 256, // C3[2], coeff of eps^4, polynomial in n of order 1 1, 3, 128, // C3[2], coeff of eps^3, polynomial in n of order 2 -3, -2, 3, 64, // C3[2], coeff of eps^2, polynomial in n of order 2 1, -3, 2, 32, // C3[3], coeff of eps^5, polynomial in n of order 0 7, 512, // C3[3], coeff of eps^4, polynomial in n of order 1 -10, 9, 384, // C3[3], coeff of eps^3, polynomial in n of order 2 5, -9, 5, 192, // C3[4], coeff of eps^5, polynomial in n of order 0 7, 512, // C3[4], coeff of eps^4, polynomial in n of order 1 -14, 7, 512, // C3[5], coeff of eps^5, polynomial in n of order 0 21, 2560, }; int o = 0, k = 0; for (int l = 1; l < nC3_; ++l) { // l is index of C3[l] for (int j = nC3_ - 1; j >= l; --j) { // coeff of eps^j int m = Math.min(nC3_ - j - 1, j); // order of polynomial in n _C3x[k++] = GeoMath.polyval(m, coeff, o, _n) / coeff[o + m + 1]; o += m + 2; } } } protected void C4coeff() { final double coeff[] = { // C4[0], coeff of eps^5, polynomial in n of order 0 97, 15015, // C4[0], coeff of eps^4, polynomial in n of order 1 1088, 156, 45045, // C4[0], coeff of eps^3, polynomial in n of order 2 -224, -4784, 1573, 45045, // C4[0], coeff of eps^2, polynomial in n of order 3 -10656, 14144, -4576, -858, 45045, // C4[0], coeff of eps^1, polynomial in n of order 4 64, 624, -4576, 6864, -3003, 15015, // C4[0], coeff of eps^0, polynomial in n of order 5 100, 208, 572, 3432, -12012, 30030, 45045, // C4[1], coeff of eps^5, polynomial in n of order 0 1, 9009, // C4[1], coeff of eps^4, polynomial in n of order 1 -2944, 468, 135135, // C4[1], coeff of eps^3, polynomial in n of order 2 5792, 1040, -1287, 135135, // C4[1], coeff of eps^2, polynomial in n of order 3 5952, -11648, 9152, -2574, 135135, // C4[1], coeff of eps^1, polynomial in n of order 4 -64, -624, 4576, -6864, 3003, 135135, // C4[2], coeff of eps^5, polynomial in n of order 0 8, 10725, // C4[2], coeff of eps^4, polynomial in n of order 1 1856, -936, 225225, // C4[2], coeff of eps^3, polynomial in n of order 2 -8448, 4992, -1144, 225225, // C4[2], coeff of eps^2, polynomial in n of order 3 -1440, 4160, -4576, 1716, 225225, // C4[3], coeff of eps^5, polynomial in n of order 0 -136, 63063, // C4[3], coeff of eps^4, polynomial in n of order 1 1024, -208, 105105, // C4[3], coeff of eps^3, polynomial in n of order 2 3584, -3328, 1144, 315315, // C4[4], coeff of eps^5, polynomial in n of order 0 -128, 135135, // C4[4], coeff of eps^4, polynomial in n of order 1 -2560, 832, 405405, // C4[5], coeff of eps^5, polynomial in n of order 0 128, 99099, }; int o = 0, k = 0; for (int l = 0; l < nC4_; ++l) { // l is index of C4[l] for (int j = nC4_ - 1; j >= l; --j) { // coeff of eps^j int m = nC4_ - j - 1; // order of polynomial in n _C4x[k++] = GeoMath.polyval(m, coeff, o, _n) / coeff[o + m + 1]; o += m + 2; } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy