net.sf.geographiclib.PolygonArea Maven / Gradle / Ivy
Show all versions of GeographicLib-Java Show documentation
/**
* Implementation of the net.sf.geographiclib.PolygonArea class
*
* Copyright (c) Charles Karney (2013-2019) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
package net.sf.geographiclib;
/**
* Polygon areas.
*
* This computes the area of a geodesic polygon using the method given
* Section 6 of
*
* -
* C. F. F. Karney,
*
* Algorithms for geodesics,
* J. Geodesy 87, 43–55 (2013)
* (
* addenda).
*
*
* Arbitrarily complex polygons are allowed. In the case self-intersecting of
* polygons the area is accumulated "algebraically", e.g., the areas of the 2
* loops in a figure-8 polygon will partially cancel.
*
* This class lets you add vertices one at a time to the polygon. The area
* and perimeter are accumulated at two times the standard floating point
* precision to guard against the loss of accuracy with many-sided polygons.
* At any point you can ask for the perimeter and area so far. There's an
* option to treat the points as defining a polyline instead of a polygon; in
* that case, only the perimeter is computed.
*
* Example of use:
*
* {@code
* // Compute the area of a geodesic polygon.
*
* // This program reads lines with lat, lon for each vertex of a polygon.
* // At the end of input, the program prints the number of vertices,
* // the perimeter of the polygon and its area (for the WGS84 ellipsoid).
*
* import java.util.*;
* import net.sf.geographiclib.*;
*
* public class Planimeter {
* public static void main(String[] args) {
* PolygonArea p = new PolygonArea(Geodesic.WGS84, false);
* try {
* Scanner in = new Scanner(System.in);
* while (true) {
* double lat = in.nextDouble(), lon = in.nextDouble();
* p.AddPoint(lat, lon);
* }
* }
* catch (Exception e) {}
* PolygonResult r = p.Compute();
* System.out.println(r.num + " " + r.perimeter + " " + r.area);
* }
* }}
**********************************************************************/
public class PolygonArea {
private Geodesic _earth;
private double _area0; // Full ellipsoid area
private boolean _polyline; // Assume polyline (don't close and skip area)
private int _mask;
private int _num;
private int _crossings;
private Accumulator _areasum, _perimetersum;
private double _lat0, _lon0, _lat1, _lon1;
private static int transit(double lon1, double lon2) {
// Return 1 or -1 if crossing prime meridian in east or west direction.
// Otherwise return zero.
// Compute lon12 the same way as Geodesic.Inverse.
lon1 = GeoMath.AngNormalize(lon1);
lon2 = GeoMath.AngNormalize(lon2);
double lon12 = GeoMath.AngDiff(lon1, lon2).first;
int cross =
lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
(lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
return cross;
}
// an alternate version of transit to deal with longitudes in the direct
// problem.
private static int transitdirect(double lon1, double lon2) {
// We want to compute exactly
// int(ceil(lon2 / 360)) - int(ceil(lon1 / 360))
// Since we only need the parity of the result we can use std::remquo but
// this is buggy with g++ 4.8.3 and requires C++11. So instead we do
lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
return ( ((lon2 <= 0 && lon2 > -360) || lon2 > 360 ? 1 : 0) -
((lon1 <= 0 && lon1 > -360) || lon1 > 360 ? 1 : 0) );
}
// reduce Accumulator area to allowed range
private static double AreaReduceA(Accumulator area, double area0,
int crossings,
boolean reverse, boolean sign) {
area.Remainder(area0);
if ((crossings & 1) != 0)
area.Add((area.Sum() < 0 ? 1 : -1) * area0/2);
// area is with the clockwise sense. If !reverse convert to
// counter-clockwise convention.
if (!reverse)
area.Negate();
// If sign put area in (-area0/2, area0/2], else put area in [0, area0)
if (sign) {
if (area.Sum() > area0/2)
area.Add(-area0);
else if (area.Sum() <= -area0/2)
area.Add(+area0);
} else {
if (area.Sum() >= area0)
area.Add(-area0);
else if (area.Sum() < 0)
area.Add(+area0);
}
return 0 + area.Sum();
}
// reduce double area to allowed range
private static double AreaReduceB(double area, double area0,
int crossings,
boolean reverse, boolean sign) {
area = GeoMath.remainder(area, area0);
if ((crossings & 1) != 0)
area += (area < 0 ? 1 : -1) * area0/2;
// area is with the clockwise sense. If !reverse convert to
// counter-clockwise convention.
if (!reverse)
area *= -1;
// If sign put area in (-area0/2, area0/2], else put area in [0, area0)
if (sign) {
if (area > area0/2)
area -= area0;
else if (area <= -area0/2)
area += area0;
} else {
if (area >= area0)
area -= area0;
else if (area < 0)
area += area0;
}
return 0 + area;
}
/**
* Constructor for PolygonArea.
*
* @param earth the Geodesic object to use for geodesic calculations.
* @param polyline if true that treat the points as defining a polyline
* instead of a polygon.
**********************************************************************/
public PolygonArea(Geodesic earth, boolean polyline) {
_earth = earth;
_area0 = _earth.EllipsoidArea();
_polyline = polyline;
_mask = GeodesicMask.LATITUDE | GeodesicMask.LONGITUDE |
GeodesicMask.DISTANCE |
(_polyline ? GeodesicMask.NONE :
GeodesicMask.AREA | GeodesicMask.LONG_UNROLL);
_perimetersum = new Accumulator(0);
if (!_polyline)
_areasum = new Accumulator(0);
Clear();
}
/**
* Clear PolygonArea, allowing a new polygon to be started.
**********************************************************************/
public void Clear() {
_num = 0;
_crossings = 0;
_perimetersum.Set(0);
if (!_polyline) _areasum.Set(0);
_lat0 = _lon0 = _lat1 = _lon1 = Double.NaN;
}
/**
* Add a point to the polygon or polyline.
*
* @param lat the latitude of the point (degrees).
* @param lon the latitude of the point (degrees).
*
* lat should be in the range [−90°, 90°].
**********************************************************************/
public void AddPoint(double lat, double lon) {
lon = GeoMath.AngNormalize(lon);
if (_num == 0) {
_lat0 = _lat1 = lat;
_lon0 = _lon1 = lon;
} else {
GeodesicData g = _earth.Inverse(_lat1, _lon1, lat, lon, _mask);
_perimetersum.Add(g.s12);
if (!_polyline) {
_areasum.Add(g.S12);
_crossings += transit(_lon1, lon);
}
_lat1 = lat; _lon1 = lon;
}
++_num;
}
/**
* Add an edge to the polygon or polyline.
*
* @param azi azimuth at current point (degrees).
* @param s distance from current point to next point (meters).
*
* This does nothing if no points have been added yet. Use
* PolygonArea.CurrentPoint to determine the position of the new vertex.
**********************************************************************/
public void AddEdge(double azi, double s) {
if (_num > 0) { // Do nothing if _num is zero
GeodesicData g = _earth.Direct(_lat1, _lon1, azi, s, _mask);
_perimetersum.Add(g.s12);
if (!_polyline) {
_areasum.Add(g.S12);
_crossings += transitdirect(_lon1, g.lon2);
}
_lat1 = g.lat2; _lon1 = g.lon2;
++_num;
}
}
/**
* Return the results so far.
*
* @return PolygonResult(num, perimeter, area) where
* num is the number of vertices, perimeter is the perimeter
* of the polygon or the length of the polyline (meters), and area
* is the area of the polygon (meters2) or Double.NaN of
* polyline is true in the constructor.
*
* Counter-clockwise traversal counts as a positive area.
**********************************************************************/
public PolygonResult Compute() { return Compute(false, true); }
/**
* Return the results so far.
*
* @param reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @return PolygonResult(num, perimeter, area) where
* num is the number of vertices, perimeter is the perimeter
* of the polygon or the length of the polyline (meters), and area
* is the area of the polygon (meters2) or Double.NaN of
* polyline is true in the constructor.
*
* More points can be added to the polygon after this call.
**********************************************************************/
public PolygonResult Compute(boolean reverse, boolean sign) {
if (_num < 2)
return new PolygonResult(_num, 0, _polyline ? Double.NaN : 0);
if (_polyline)
return new PolygonResult(_num, _perimetersum.Sum(), Double.NaN);
GeodesicData g = _earth.Inverse(_lat1, _lon1, _lat0, _lon0, _mask);
Accumulator tempsum = new Accumulator(_areasum);
tempsum.Add(g.S12);
return
new PolygonResult(_num, _perimetersum.Sum(g.s12),
AreaReduceA(tempsum, _area0,
_crossings + transit(_lon1, _lon0),
reverse, sign));
}
/**
* Return the results assuming a tentative final test point is added;
* however, the data for the test point is not saved. This lets you report
* a running result for the perimeter and area as the user moves the mouse
* cursor. Ordinary floating point arithmetic is used to accumulate the
* data for the test point; thus the area and perimeter returned are less
* accurate than if AddPoint and Compute are used.
*
* @param lat the latitude of the test point (degrees).
* @param lon the longitude of the test point (degrees).
* @param reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @return PolygonResult(num, perimeter, area) where
* num is the number of vertices, perimeter is the perimeter
* of the polygon or the length of the polyline (meters), and area
* is the area of the polygon (meters2) or Double.NaN of
* polyline is true in the constructor.
*
* lat should be in the range [−90°, 90°].
**********************************************************************/
public PolygonResult TestPoint(double lat, double lon,
boolean reverse, boolean sign) {
if (_num == 0)
return new PolygonResult(1, 0, _polyline ? Double.NaN : 0);
double perimeter = _perimetersum.Sum();
double tempsum = _polyline ? 0 : _areasum.Sum();
int crossings = _crossings;
int num = _num + 1;
for (int i = 0; i < (_polyline ? 1 : 2); ++i) {
GeodesicData g =
_earth.Inverse(i == 0 ? _lat1 : lat, i == 0 ? _lon1 : lon,
i != 0 ? _lat0 : lat, i != 0 ? _lon0 : lon,
_mask);
perimeter += g.s12;
if (!_polyline) {
tempsum += g.S12;
crossings += transit(i == 0 ? _lon1 : lon,
i != 0 ? _lon0 : lon);
}
}
if (_polyline)
return new PolygonResult(num, perimeter, Double.NaN);
return new PolygonResult(num, perimeter,
AreaReduceB(tempsum, _area0, crossings,
reverse, sign));
}
/**
* Return the results assuming a tentative final test point is added via an
* azimuth and distance; however, the data for the test point is not saved.
* This lets you report a running result for the perimeter and area as the
* user moves the mouse cursor. Ordinary floating point arithmetic is used
* to accumulate the data for the test point; thus the area and perimeter
* returned are less accurate than if AddPoint and Compute are used.
*
* @param azi azimuth at current point (degrees).
* @param s distance from current point to final test point (meters).
* @param reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @return PolygonResult(num, perimeter, area) where
* num is the number of vertices, perimeter is the perimeter
* of the polygon or the length of the polyline (meters), and area
* is the area of the polygon (meters2) or Double.NaN of
* polyline is true in the constructor.
**********************************************************************/
public PolygonResult TestEdge(double azi, double s,
boolean reverse, boolean sign) {
if (_num == 0) // we don't have a starting point!
return new PolygonResult(0, Double.NaN, Double.NaN);
int num = _num + 1;
double perimeter = _perimetersum.Sum() + s;
if (_polyline)
return new PolygonResult(num, perimeter, Double.NaN);
double tempsum = _areasum.Sum();
int crossings = _crossings;
{
double lat, lon, s12, S12, t;
GeodesicData g =
_earth.Direct(_lat1, _lon1, azi, false, s, _mask);
tempsum += g.S12;
crossings += transitdirect(_lon1, g.lon2);
crossings += transit(g.lon2, _lon0);
g = _earth.Inverse(g.lat2, g.lon2, _lat0, _lon0, _mask);
perimeter += g.s12;
tempsum += g.S12;
}
return new PolygonResult(num, perimeter,
AreaReduceB(tempsum, _area0, crossings,
reverse, sign));
}
/**
* @return a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic object used in the constructor.
**********************************************************************/
public double EquatorialRadius() { return _earth.EquatorialRadius(); }
/**
* @return f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic object used in the constructor.
**********************************************************************/
public double Flattening() { return _earth.Flattening(); }
/**
* Report the previous vertex added to the polygon or polyline.
*
* @return Pair(lat, lon), the current latitude and longitude.
*
* If no points have been added, then Double.NaN is returned. Otherwise,
* lon will be in the range [−180°, 180°].
**********************************************************************/
public Pair CurrentPoint() { return new Pair(_lat1, _lon1); }
/**
* @deprecated An old name for {@link #EquatorialRadius()}.
* @return a the equatorial radius of the ellipsoid (meters).
**********************************************************************/
// @Deprecated
public double MajorRadius() { return EquatorialRadius(); }
}