All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.geographiclib.PolygonArea Maven / Gradle / Ivy

Go to download

This is a Java implementation of the geodesic algorithms from GeographicLib. This is a self-contained library to solve geodesic problems on an ellipsoid model of the earth. It requires Java version 1.7 or later.

There is a newer version: 2.0
Show newest version
/**
 * Implementation of the net.sf.geographiclib.PolygonArea class
 *
 * Copyright (c) Charles Karney (2013-2019)  and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 **********************************************************************/
package net.sf.geographiclib;

/**
 * Polygon areas.
 * 

* This computes the area of a geodesic polygon using the method given * Section 6 of *

*

* Arbitrarily complex polygons are allowed. In the case self-intersecting of * polygons the area is accumulated "algebraically", e.g., the areas of the 2 * loops in a figure-8 polygon will partially cancel. *

* This class lets you add vertices one at a time to the polygon. The area * and perimeter are accumulated at two times the standard floating point * precision to guard against the loss of accuracy with many-sided polygons. * At any point you can ask for the perimeter and area so far. There's an * option to treat the points as defining a polyline instead of a polygon; in * that case, only the perimeter is computed. *

* Example of use: *

 * {@code
 * // Compute the area of a geodesic polygon.
 *
 * // This program reads lines with lat, lon for each vertex of a polygon.
 * // At the end of input, the program prints the number of vertices,
 * // the perimeter of the polygon and its area (for the WGS84 ellipsoid).
 *
 * import java.util.*;
 * import net.sf.geographiclib.*;
 *
 * public class Planimeter {
 *   public static void main(String[] args) {
 *     PolygonArea p = new PolygonArea(Geodesic.WGS84, false);
 *     try {
 *       Scanner in = new Scanner(System.in);
 *       while (true) {
 *         double lat = in.nextDouble(), lon = in.nextDouble();
 *         p.AddPoint(lat, lon);
 *       }
 *     }
 *     catch (Exception e) {}
 *     PolygonResult r = p.Compute();
 *     System.out.println(r.num + " " + r.perimeter + " " + r.area);
 *   }
 * }}
**********************************************************************/ public class PolygonArea { private Geodesic _earth; private double _area0; // Full ellipsoid area private boolean _polyline; // Assume polyline (don't close and skip area) private int _mask; private int _num; private int _crossings; private Accumulator _areasum, _perimetersum; private double _lat0, _lon0, _lat1, _lon1; private static int transit(double lon1, double lon2) { // Return 1 or -1 if crossing prime meridian in east or west direction. // Otherwise return zero. // Compute lon12 the same way as Geodesic.Inverse. lon1 = GeoMath.AngNormalize(lon1); lon2 = GeoMath.AngNormalize(lon2); double lon12 = GeoMath.AngDiff(lon1, lon2).first; int cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 : (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0); return cross; } // an alternate version of transit to deal with longitudes in the direct // problem. private static int transitdirect(double lon1, double lon2) { // We want to compute exactly // int(ceil(lon2 / 360)) - int(ceil(lon1 / 360)) // Since we only need the parity of the result we can use std::remquo but // this is buggy with g++ 4.8.3 and requires C++11. So instead we do lon1 = lon1 % 720.0; lon2 = lon2 % 720.0; return ( ((lon2 <= 0 && lon2 > -360) || lon2 > 360 ? 1 : 0) - ((lon1 <= 0 && lon1 > -360) || lon1 > 360 ? 1 : 0) ); } // reduce Accumulator area to allowed range private static double AreaReduceA(Accumulator area, double area0, int crossings, boolean reverse, boolean sign) { area.Remainder(area0); if ((crossings & 1) != 0) area.Add((area.Sum() < 0 ? 1 : -1) * area0/2); // area is with the clockwise sense. If !reverse convert to // counter-clockwise convention. if (!reverse) area.Negate(); // If sign put area in (-area0/2, area0/2], else put area in [0, area0) if (sign) { if (area.Sum() > area0/2) area.Add(-area0); else if (area.Sum() <= -area0/2) area.Add(+area0); } else { if (area.Sum() >= area0) area.Add(-area0); else if (area.Sum() < 0) area.Add(+area0); } return 0 + area.Sum(); } // reduce double area to allowed range private static double AreaReduceB(double area, double area0, int crossings, boolean reverse, boolean sign) { area = GeoMath.remainder(area, area0); if ((crossings & 1) != 0) area += (area < 0 ? 1 : -1) * area0/2; // area is with the clockwise sense. If !reverse convert to // counter-clockwise convention. if (!reverse) area *= -1; // If sign put area in (-area0/2, area0/2], else put area in [0, area0) if (sign) { if (area > area0/2) area -= area0; else if (area <= -area0/2) area += area0; } else { if (area >= area0) area -= area0; else if (area < 0) area += area0; } return 0 + area; } /** * Constructor for PolygonArea. *

* @param earth the Geodesic object to use for geodesic calculations. * @param polyline if true that treat the points as defining a polyline * instead of a polygon. **********************************************************************/ public PolygonArea(Geodesic earth, boolean polyline) { _earth = earth; _area0 = _earth.EllipsoidArea(); _polyline = polyline; _mask = GeodesicMask.LATITUDE | GeodesicMask.LONGITUDE | GeodesicMask.DISTANCE | (_polyline ? GeodesicMask.NONE : GeodesicMask.AREA | GeodesicMask.LONG_UNROLL); _perimetersum = new Accumulator(0); if (!_polyline) _areasum = new Accumulator(0); Clear(); } /** * Clear PolygonArea, allowing a new polygon to be started. **********************************************************************/ public void Clear() { _num = 0; _crossings = 0; _perimetersum.Set(0); if (!_polyline) _areasum.Set(0); _lat0 = _lon0 = _lat1 = _lon1 = Double.NaN; } /** * Add a point to the polygon or polyline. *

* @param lat the latitude of the point (degrees). * @param lon the latitude of the point (degrees). *

* lat should be in the range [−90°, 90°]. **********************************************************************/ public void AddPoint(double lat, double lon) { lon = GeoMath.AngNormalize(lon); if (_num == 0) { _lat0 = _lat1 = lat; _lon0 = _lon1 = lon; } else { GeodesicData g = _earth.Inverse(_lat1, _lon1, lat, lon, _mask); _perimetersum.Add(g.s12); if (!_polyline) { _areasum.Add(g.S12); _crossings += transit(_lon1, lon); } _lat1 = lat; _lon1 = lon; } ++_num; } /** * Add an edge to the polygon or polyline. *

* @param azi azimuth at current point (degrees). * @param s distance from current point to next point (meters). *

* This does nothing if no points have been added yet. Use * PolygonArea.CurrentPoint to determine the position of the new vertex. **********************************************************************/ public void AddEdge(double azi, double s) { if (_num > 0) { // Do nothing if _num is zero GeodesicData g = _earth.Direct(_lat1, _lon1, azi, s, _mask); _perimetersum.Add(g.s12); if (!_polyline) { _areasum.Add(g.S12); _crossings += transitdirect(_lon1, g.lon2); } _lat1 = g.lat2; _lon1 = g.lon2; ++_num; } } /** * Return the results so far. *

* @return PolygonResult(num, perimeter, area) where * num is the number of vertices, perimeter is the perimeter * of the polygon or the length of the polyline (meters), and area * is the area of the polygon (meters2) or Double.NaN of * polyline is true in the constructor. *

* Counter-clockwise traversal counts as a positive area. **********************************************************************/ public PolygonResult Compute() { return Compute(false, true); } /** * Return the results so far. *

* @param reverse if true then clockwise (instead of counter-clockwise) * traversal counts as a positive area. * @param sign if true then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @return PolygonResult(num, perimeter, area) where * num is the number of vertices, perimeter is the perimeter * of the polygon or the length of the polyline (meters), and area * is the area of the polygon (meters2) or Double.NaN of * polyline is true in the constructor. *

* More points can be added to the polygon after this call. **********************************************************************/ public PolygonResult Compute(boolean reverse, boolean sign) { if (_num < 2) return new PolygonResult(_num, 0, _polyline ? Double.NaN : 0); if (_polyline) return new PolygonResult(_num, _perimetersum.Sum(), Double.NaN); GeodesicData g = _earth.Inverse(_lat1, _lon1, _lat0, _lon0, _mask); Accumulator tempsum = new Accumulator(_areasum); tempsum.Add(g.S12); return new PolygonResult(_num, _perimetersum.Sum(g.s12), AreaReduceA(tempsum, _area0, _crossings + transit(_lon1, _lon0), reverse, sign)); } /** * Return the results assuming a tentative final test point is added; * however, the data for the test point is not saved. This lets you report * a running result for the perimeter and area as the user moves the mouse * cursor. Ordinary floating point arithmetic is used to accumulate the * data for the test point; thus the area and perimeter returned are less * accurate than if AddPoint and Compute are used. *

* @param lat the latitude of the test point (degrees). * @param lon the longitude of the test point (degrees). * @param reverse if true then clockwise (instead of counter-clockwise) * traversal counts as a positive area. * @param sign if true then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @return PolygonResult(num, perimeter, area) where * num is the number of vertices, perimeter is the perimeter * of the polygon or the length of the polyline (meters), and area * is the area of the polygon (meters2) or Double.NaN of * polyline is true in the constructor. *

* lat should be in the range [−90°, 90°]. **********************************************************************/ public PolygonResult TestPoint(double lat, double lon, boolean reverse, boolean sign) { if (_num == 0) return new PolygonResult(1, 0, _polyline ? Double.NaN : 0); double perimeter = _perimetersum.Sum(); double tempsum = _polyline ? 0 : _areasum.Sum(); int crossings = _crossings; int num = _num + 1; for (int i = 0; i < (_polyline ? 1 : 2); ++i) { GeodesicData g = _earth.Inverse(i == 0 ? _lat1 : lat, i == 0 ? _lon1 : lon, i != 0 ? _lat0 : lat, i != 0 ? _lon0 : lon, _mask); perimeter += g.s12; if (!_polyline) { tempsum += g.S12; crossings += transit(i == 0 ? _lon1 : lon, i != 0 ? _lon0 : lon); } } if (_polyline) return new PolygonResult(num, perimeter, Double.NaN); return new PolygonResult(num, perimeter, AreaReduceB(tempsum, _area0, crossings, reverse, sign)); } /** * Return the results assuming a tentative final test point is added via an * azimuth and distance; however, the data for the test point is not saved. * This lets you report a running result for the perimeter and area as the * user moves the mouse cursor. Ordinary floating point arithmetic is used * to accumulate the data for the test point; thus the area and perimeter * returned are less accurate than if AddPoint and Compute are used. *

* @param azi azimuth at current point (degrees). * @param s distance from current point to final test point (meters). * @param reverse if true then clockwise (instead of counter-clockwise) * traversal counts as a positive area. * @param sign if true then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @return PolygonResult(num, perimeter, area) where * num is the number of vertices, perimeter is the perimeter * of the polygon or the length of the polyline (meters), and area * is the area of the polygon (meters2) or Double.NaN of * polyline is true in the constructor. **********************************************************************/ public PolygonResult TestEdge(double azi, double s, boolean reverse, boolean sign) { if (_num == 0) // we don't have a starting point! return new PolygonResult(0, Double.NaN, Double.NaN); int num = _num + 1; double perimeter = _perimetersum.Sum() + s; if (_polyline) return new PolygonResult(num, perimeter, Double.NaN); double tempsum = _areasum.Sum(); int crossings = _crossings; { double lat, lon, s12, S12, t; GeodesicData g = _earth.Direct(_lat1, _lon1, azi, false, s, _mask); tempsum += g.S12; crossings += transitdirect(_lon1, g.lon2); crossings += transit(g.lon2, _lon0); g = _earth.Inverse(g.lat2, g.lon2, _lat0, _lon0, _mask); perimeter += g.s12; tempsum += g.S12; } return new PolygonResult(num, perimeter, AreaReduceB(tempsum, _area0, crossings, reverse, sign)); } /** * @return a the equatorial radius of the ellipsoid (meters). This is * the value inherited from the Geodesic object used in the constructor. **********************************************************************/ public double EquatorialRadius() { return _earth.EquatorialRadius(); } /** * @return f the flattening of the ellipsoid. This is the value * inherited from the Geodesic object used in the constructor. **********************************************************************/ public double Flattening() { return _earth.Flattening(); } /** * Report the previous vertex added to the polygon or polyline. *

* @return Pair(lat, lon), the current latitude and longitude. *

* If no points have been added, then Double.NaN is returned. Otherwise, * lon will be in the range [−180°, 180°]. **********************************************************************/ public Pair CurrentPoint() { return new Pair(_lat1, _lon1); } /** * @deprecated An old name for {@link #EquatorialRadius()}. * @return a the equatorial radius of the ellipsoid (meters). **********************************************************************/ // @Deprecated public double MajorRadius() { return EquatorialRadius(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy