All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.jgraph.algebra.JGraphAlgebra Maven / Gradle / Ivy

The newest version!
/*
 * $Id: JGraphAlgebra.java,v 1.1 2009/09/25 15:14:15 david Exp $
 * Copyright (c) 2001-2005, Gaudenz Alder
 * 
 * All rights reserved. 
 * 
 * This file is licensed under the JGraph software license, a copy of which
 * will have been provided to you in the file LICENSE at the root of your
 * installation directory. If you are unable to locate this file please
 * contact JGraph sales for another copy.
 */
package com.jgraph.algebra;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;

import org.jgraph.graph.DefaultGraphModel;
import org.jgraph.graph.GraphModel;

import com.jgraph.algebra.cost.JGraphCostFunction;

/**
 * A singleton class that provides algorithms for graphs. Assume the following
 * variable for the following examples: 
* JGraphDistanceCostFunction(graph.getGraphLayoutCache());
* JGraphFacade facade = new JGraphFacade(graph);
* Object[] v = facade.getVertices().toArray();
* Object[] e = facade.getEdges().toArray();
* JGraphAlgebra alg = JGraphAlgebra.getSharedInstance();
* *

Shortest Path (Dijkstra)

* * For example, to find the shortest path between the first and the second * selected cell in a graph use the following code:
*
* Object[] path = alg.getShortestPath(graph.getModel(), sourceVertex, * targetVertex, cf, v.length, true) * *

Minimum Spanning Tree

* * This algorithm finds the set of edges with the minimal length that connect * all vertices. This algorithm can be used as follows: *
Prim
* alg.getMinimumSpanningTree(graph.getModel(), v, cf, true)) *
Kruskal
* alg.getMinimumSpanningTree(graph.getModel(), v, e, cf)) * *

Connection Components

* * The union find may be used as follows to determine whether two cells are * connected: boolean connected = uf.differ(vertex1, vertex2). * * @see JGraphCostFunction */ public class JGraphAlgebra { /** * Holds the shared instance of this class. */ protected static JGraphAlgebra sharedInstance = new JGraphAlgebra(); /** * @return Returns the sharedInstance. */ public static JGraphAlgebra getSharedInstance() { return sharedInstance; } /** * Sets the shared instance of this class. * * @param sharedInstance * The sharedInstance to set. */ public static void setSharedInstance(JGraphAlgebra sharedInstance) { JGraphAlgebra.sharedInstance = sharedInstance; } /** * Subclassers may override to provide special union find and priority queue * datastructures. */ protected JGraphAlgebra() { // empty } /** * Returns the shortest path between two cells or their descendants * represented as an array of edges in order of traversal.
* This implementation is based on the Dijkstra algorithm. * * @param model * the model that defines the graph structure * @param from * the source port or vertex * @param to * the target port or vertex (aka. sink) * @param cf * the cost function that defines the edge length * @param steps * the maximum number of edges to traverse * @param directed * if edge directions should be taken into account * * @return Returns the shortest path as an array of edges * * @see #createPriorityQueue() */ public Object[] getShortestPath(GraphModel model, Object from, Object to, JGraphCostFunction cf, int steps, boolean directed) { // Sets up a pqueue and a hashtable to store the predecessor for each // cell in tha graph traversal. The pqueue is initialized // with the from element at prio 0. JGraphFibonacciHeap q = createPriorityQueue(); Hashtable pred = new Hashtable(); q.decreaseKey(q.getNode(from, true), 0); // Inserts automatically // The main loop of the dijkstra algorithm is based on the pqueue being // updated with the actual shortest distance to the source vertex. for (int j = 0; j < steps; j++) { JGraphFibonacciHeap.Node node = q.removeMin(); double prio = node.getKey(); Object obj = node.getUserObject(); // Exits the loop if the target node or vertex has been reached if (obj == to) break; // Gets all outgoing edges of the closest cell to the source Object[] e = (directed) ? DefaultGraphModel.getOutgoingEdges(model, obj) : DefaultGraphModel.getEdges(model, new Object[] { obj }).toArray(); if (e != null) { for (int i = 0; i < e.length; i++) { Object neighbour = DefaultGraphModel.getOpposite(model, e[i], obj); // Updates the priority in the pqueue for the opposite node // to be the distance of this step plus the cost to // traverese the edge to the neighbour. Note that the // priority queue will make sure that in the next step the // node with the smallest prio will be traversed. if (neighbour != null && neighbour != obj && neighbour != from) { double newPrio = prio + ((cf != null) ? cf.getCost(e[i]) : 1); node = q.getNode(neighbour, true); double oldPrio = node.getKey(); if (newPrio < oldPrio) { pred.put(neighbour, e[i]); q.decreaseKey(node, newPrio); } } } } if (q.isEmpty()) break; } // Constructs a path array by walking backwards through the predessecor // map and filling up a list of edges, which is subsequently returned. ArrayList list = new ArrayList(steps); Object obj = to; Object edge = pred.get(obj); while (edge != null) { list.add(0, edge); obj = DefaultGraphModel.getOpposite(model, edge, obj); edge = pred.get(obj); // System.out.println("edge="+edge+" obj="+obj); } return list.toArray(); } /** * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V). * The MST is defined as the set of all vertices with minimal lengths that * forms no cycles in G.
* This implementation is based on the algorihm by Prim-Jarnik. It uses * O(|E|+|V|log|V|) time when used with a Fibonacci heap and a graph whith a * double linked-list datastructure, as is the case with the default * implementation. * * @param model * the model that describes the graph * @param v * the vertices of the graph * @param cf * the cost function that defines the edge length * * @return Returns the MST as an array of edges * * @see #createPriorityQueue() */ public Object[] getMinimumSpanningTree(GraphModel model, Object[] v, JGraphCostFunction cf, boolean directed) { ArrayList mst = new ArrayList(v.length); // Sets up a pqueue and a hashtable to store the predecessor for each // cell in tha graph traversal. The pqueue is initialized // with the from element at prio 0. JGraphFibonacciHeap q = createPriorityQueue(); Hashtable pred = new Hashtable(); Object u = v[0]; q.decreaseKey(q.getNode(u, true), 0); for (int i = 1; i < v.length; i++) q.getNode(v[i], true); // The main loop of the dijkstra algorithm is based on the pqueue being // updated with the actual shortest distance to the source vertex. while (!q.isEmpty()) { JGraphFibonacciHeap.Node node = q.removeMin(); u = node.getUserObject(); Object edge = pred.get(u); if (edge != null) mst.add(edge); // Gets all outgoing edges of the closest cell to the source Object[] e = (directed) ? DefaultGraphModel.getOutgoingEdges(model, u) : DefaultGraphModel.getEdges(model, new Object[] { u }) .toArray(); if (e != null) { for (int i = 0; i < e.length; i++) { Object neighbour = DefaultGraphModel.getOpposite(model, e[i], u); // Updates the priority in the pqueue for the opposite node // to be the distance of this step plus the cost to // traverese the edge to the neighbour. Note that the // priority queue will make sure that in the next step the // node with the smallest prio will be traversed. if (neighbour != null && neighbour != u) { node = q.getNode(neighbour, false); if (node != null) { double newPrio = cf.getCost(e[i]); double oldPrio = node.getKey(); if (newPrio < oldPrio) { pred.put(neighbour, e[i]); q.decreaseKey(node, newPrio); } } } } } } return mst.toArray(); } /** * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V). * The MST is defined as the set of all vertices with minimal lenths that * forms no cycles in G.
* This implementation is based on the algorihm by Kruskal. It uses * O(|E|log|E|)=O(|E|log|V|) time for sorting the edges, O(|V|) create sets, * O(|E|) find and O(|V|) union calls on the union find structure, thus * yielding no more than O(|E|log|V|) steps. For a faster implementatin * * @see #getMinimumSpanningTree(GraphModel, Object[], JGraphCostFunction, * boolean) * * @param model * the model that describes the graph * @param v * the vertices of the graph * @param e * the edges of the graph * @param cf * the cost function that defines the edge length * * @return Returns the MST as an array of edges * * @see #createUnionFind(Object[]) */ public Object[] getMinimumSpanningTree(GraphModel model, Object[] v, Object[] e, JGraphCostFunction cf) { // Sorts all edges according to their lengths, then creates a union // find structure for all vertices. Then walks through all edges by // increasing length and tries adding to the MST. Only edges are added // that do not form cycles in the graph, that is, where the source // and target are in different sets in the union find structure. // Whenever an edge is added to the MST, the two different sets are // unified. JGraphUnionFind uf = createUnionFind(v); Iterator it = sort(e, cf).iterator(); ArrayList result = new ArrayList(e.length); while (it.hasNext()) { Object edge = it.next(); Object source = DefaultGraphModel.getSourceVertex(model, edge); Object target = DefaultGraphModel.getTargetVertex(model, edge); JGraphUnionFind.Node setA = uf.find(uf.getNode(source)); JGraphUnionFind.Node setB = uf.find(uf.getNode(target)); if (setA == null || setB == null || setA != setB) { uf.union(setA, setB); result.add(edge); } } return result.toArray(); } /** * Returns a union find structure representing the connection components of * G=(E,V). * * @param model * the model that describes the graph * @param v * the vertices of the graph * @param e * the edges of the graph * * @return Returns the connection components in G=(E,V) * * @see #createUnionFind(Object[]) */ public JGraphUnionFind getConnectionComponents(GraphModel model, Object[] v, Object[] e) { JGraphUnionFind uf = createUnionFind(v); for (int i = 0; i < e.length; i++) { Object source = DefaultGraphModel.getSourceVertex(model, e[i]); Object target = DefaultGraphModel.getTargetVertex(model, e[i]); uf.union(uf.find(uf.getNode(source)), uf.find(uf.getNode(target))); } return uf; } /** * Returns a sorted set for cells with respect to * cf. * * @param cells * the cells to sort * @param cf * the cost function that defines the order * * @return Returns an ordered set of cells wrt. * cf */ public List sort(Object[] cells, final JGraphCostFunction cf) { List result = Arrays.asList(cells); Collections.sort(result, new Comparator() { public int compare(Object o1, Object o2) { Double d1 = new Double(cf.getCost(o1)); Double d2 = new Double(cf.getCost(o2)); return d1.compareTo(d2); } }); return result; } /** * Returns the sum of all cost for cells with respect to * cf. * * @param cells * the cells to use for the sum * @param cf * the cost function that defines the costs * * @return Returns the sum of all cell cost */ public double sum(Object[] cells, JGraphCostFunction cf) { double cost = 0; for (int i = 0; i < cells.length; i++) cost += cf.getCost(cells[i]); return cost; } /** * Hook for subclassers to provide a custom union find structure. * * @param v * the array of all elements * * @return Returns a union find structure for v */ protected JGraphUnionFind createUnionFind(Object[] v) { return new JGraphUnionFind(v); } /** * Hook for subclassers to provide a custom fibonacci heap. */ protected JGraphFibonacciHeap createPriorityQueue() { return new JGraphFibonacciHeap(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy