
net.sf.jagg.AbstractVarianceAggregator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jagg-core Show documentation
Show all versions of jagg-core Show documentation
jAgg is a Java 5.0 API that supports “group by” operations on Lists of Java objects: aggregate operations such as count, sum, max, min, avg, and many more. It also allows custom aggregate operations.
The newest version!
package net.sf.jagg;
import net.sf.jagg.exception.ExpectedNumberException;
import net.sf.jagg.math.DoubleDouble;
import net.sf.jagg.model.WindowClause;
/**
* This abstract class represents variance-like aggregator calculations over
* numeric values.
*
* @author Randy Gettman
* @since 0.3.0
*/
public abstract class AbstractVarianceAggregator extends Aggregator implements AnalyticFunction
{
/**
* A running count of items processed so far for the given property.
*/
protected long myCount;
/**
* A running total of items processed so far for the given property.
*/
protected DoubleDouble mySum = new DoubleDouble();
/**
* A running total of the variance, before it is divided by
* the denominator in the variance calculation.
*/
protected DoubleDouble myVarNumerator = new DoubleDouble();
/**
* Constructs an VarianceAggregator
that operates on the specified
* property.
* @param property Calculate the variance of this property's values.
*/
public AbstractVarianceAggregator(String property)
{
setProperty(property);
}
/**
* Initialize the sum and count to zero.
*/
public void init()
{
myCount = 0;
mySum.reset();
myVarNumerator.reset();
}
/**
* If the property is non-null, then count it and add the property value to
* the sum. Update the variance numerator.
*
* @param value The value to aggregate.
*/
public void iterate(Object value)
{
if (value != null)
{
String property = getProperty();
try
{
Number obj = (Number) getValueFromProperty(value, property);
// Don't count nulls.
if (obj != null)
{
long oldCount = myCount;
myCount++;
double dVal = obj.doubleValue();
// Running algorithm adapted from "Updating Formulae and a
// Pairwise Algorithm for Computing Sample Variances" by Chan,
// Gloub, and LeVeque, November 1979, Stanford University.
// Running sum.
mySum.addToSelf(dVal);
// Running variance numerator.
if (myCount == 1)
myVarNumerator.reset();
else
{
// temp = myCount * dVal - mySum;
DoubleDouble temp = new DoubleDouble(dVal);
temp.multiplySelfBy(myCount);
temp.subtractFromSelf(mySum);
// temp *= temp;
temp.squareSelf();
// temp /= (myCount * oldCount);
temp.divideSelfBy(myCount);
temp.divideSelfBy(oldCount);
// myVarNumerator += temp;
myVarNumerator.addToSelf(temp);
}
}
}
catch (ClassCastException e)
{
throw new ExpectedNumberException("Property \"" + property +
"\" must represent a Number.", e);
}
}
}
/**
* If the property is non-null, then un-count it and subtract the property
* value from the sum. Un-update the variance numerator.
*
* @param value The value to delete.
* @since 0.9.0
*/
public void delete(Object value)
{
if (value != null)
{
String property = getProperty();
try
{
Number obj = (Number) getValueFromProperty(value, property);
// Don't count nulls.
if (obj != null)
{
long newCount = myCount - 1;
double dVal = obj.doubleValue();
// Running variance numerator.
// "Undo" the iteration.
if (myCount <= 2)
{
// Count will drop to 1, which means a variance of 0.
myVarNumerator.reset();
}
else
{
// temp = myCount * dVal - mySum;
DoubleDouble temp = new DoubleDouble(dVal);
temp.multiplySelfBy(myCount);
temp.subtractFromSelf(mySum);
// temp *= temp;
temp.squareSelf();
// temp /= (myCount * newCount);
temp.divideSelfBy(myCount);
temp.divideSelfBy(newCount);
// Subtract what was added.
// myVarNumerator -= temp;
myVarNumerator.subtractFromSelf(temp);
}
// Running sum.
mySum.subtractFromSelf(dVal);
myCount--;
}
}
catch (ClassCastException e)
{
throw new ExpectedNumberException("Property \"" + property +
"\" must represent a Number.", e);
}
}
}
/**
* All variance functions can take a window clause.
* @return true
.
* @since 0.9.0
*/
public boolean takesWindowClause()
{
return true;
}
/**
* No variance functions supply their own window clause.
* @return null
* @since 0.9.0
*/
public WindowClause getWindowClause()
{
return null;
}
/**
* Merge the given Aggregator
into this one. Add the
* respective sums and counts together. Update the variance numerator.
*
* @param agg The Aggregator
to merge into this one.
*/
public void merge(AggregateFunction agg)
{
if (agg != null && agg instanceof AbstractVarianceAggregator)
{
AbstractVarianceAggregator otherAgg = (AbstractVarianceAggregator) agg;
if (myCount == 0)
{
// Nothing on this side yet. Just copy the other one over.
myCount = otherAgg.myCount;
mySum.addToSelf(otherAgg.mySum);
myVarNumerator.addToSelf(otherAgg.myVarNumerator);
}
else if (otherAgg.myCount > 0)
{
// We have something on this side, and there's something on the
// other side.
// Merging algorithm adapted from "Updating Formulae and a
// Pairwise Algorithm for Computing Sample Variances" by Chan,
// Gloub, and LeVeque, November 1979, Stanford University.
// temp = ((double) otherAgg.myCount / myCount) * mySum - otherAgg.mySum;
DoubleDouble temp = new DoubleDouble(otherAgg.myCount);
temp.divideSelfBy(myCount);
temp.multiplySelfBy(mySum);
temp.subtractFromSelf(otherAgg.mySum);
// temp *= temp;
temp.squareSelf();
// myVarNumerator += otherAgg.myVarNumerator +
// (double) myCount / (otherAgg.myCount * (myCount + otherAgg.myCount)) * temp;
DoubleDouble temp3 = new DoubleDouble(myCount);
temp3.divideSelfBy(otherAgg.myCount * (myCount + otherAgg.myCount));
temp3.multiplySelfBy(temp);
myVarNumerator.addToSelf(otherAgg.myVarNumerator);
myVarNumerator.addToSelf(temp3);
mySum.addToSelf(otherAgg.mySum);
myCount += otherAgg.myCount;
}
}
}
/**
* Return the result as a DoubleDouble
. This is used mainly
* when other Aggregators
that use this result must maintain a
* high precision.
* @return A DoubleDouble
representing the result of the
* aggregation.
*/
public abstract DoubleDouble terminateDoubleDouble();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy