All Downloads are FREE. Search and download functionalities are using the official Maven repository.

sim.android.hardware.SensorManager Maven / Gradle / Ivy

There is a newer version: 1.0.9
Show newest version
package sim.android.hardware;

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.util.Log;

import java.util.ArrayList;
import java.util.List;

import sim.android.hardware.service.impl.SensorEventService;

/**
 * 

* SensorManager lets you access the device's {@link android.hardware.Sensor * sensors}. Get an instance of this class by calling null {@link android.content.Context#getSystemService(java.lang.String) * Context.getSystemService()} with the argument * {@link android.content.Context#SENSOR_SERVICE}. *

*

* Always make sure to disable sensors you don't need, especially when your * activity is paused. Failing to do so can drain the battery in just a few * hours. Note that the system will not disable sensors automatically * when the screen turns off. *

* *
 * public class SensorActivity extends Activity, implements SensorEventListener
 * { private final SensorManager mSensorManager; private final Sensor
 * mAccelerometer;
 *
 * public SensorActivity() { mSensorManager =
 * (SensorManager)getSystemService(SENSOR_SERVICE); mAccelerometer =
 * mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); }
 *
 * protected void onResume() { super.onResume();
 * mSensorManager.registerListener(this, mAccelerometer,
 * SensorManager.SENSOR_DELAY_NORMAL); }
 *
 * protected void onPause() { super.onPause();
 * mSensorManager.unregisterListener(this); }
 *
 * public void onAccuracyChanged(Sensor sensor, int accuracy) { }
 *
 * public void onSensorChanged(SensorEvent event) { } }
 * 
* * @see SensorEventListener * @see SensorEvent * @see Sensor * */ public class SensorManager { private static final String TAG = "SensorManager"; private static final float[] mTempMatrix = new float[16]; /* NOTE: sensor IDs must be a power of 2 */ /** * A constant describing an orientation sensor. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ORIENTATION = 1 << 0; /** * A constant describing an accelerometer. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ACCELEROMETER = 1 << 1; /** * A constant describing a temperature sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_TEMPERATURE = 1 << 2; /** * A constant describing a magnetic sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MAGNETIC_FIELD = 1 << 3; /** * A constant describing an ambient light sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_LIGHT = 1 << 4; /** * A constant describing a proximity sensor See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_PROXIMITY = 1 << 5; /** * A constant describing a Tricorder See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_TRICORDER = 1 << 6; /** * A constant describing an orientation sensor. See * {@link android.hardware.SensorListener SensorListener} for more details. * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ORIENTATION_RAW = 1 << 7; /** * A constant that includes all sensors * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_ALL = 0x7F; /** * Smallest sensor ID * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MIN = SENSOR_ORIENTATION; /** * Largest sensor ID * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int SENSOR_MAX = ((SENSOR_ALL + 1) >> 1); /** * Index of the X value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_X = 0; /** * Index of the Y value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_Y = 1; /** * Index of the Z value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int DATA_Z = 2; /** * Offset to the untransformed values in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_INDEX = 3; /** * Index of the untransformed X value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_X = 3; /** * Index of the untransformed Y value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_Y = 4; /** * Index of the untransformed Z value in the array returned by * {@link android.hardware.SensorListener#onSensorChanged} * * @deprecated use {@link android.hardware.Sensor Sensor} instead. */ @Deprecated public static final int RAW_DATA_Z = 5; /** * Standard gravity (g) on Earth. This value is equivalent to 1G */ public static final float STANDARD_GRAVITY = 9.80665f; /** * Sun's gravity in SI units (m/s^2) */ public static final float GRAVITY_SUN = 275.0f; /** * Mercury's gravity in SI units (m/s^2) */ public static final float GRAVITY_MERCURY = 3.70f; /** * Venus' gravity in SI units (m/s^2) */ public static final float GRAVITY_VENUS = 8.87f; /** * Earth's gravity in SI units (m/s^2) */ public static final float GRAVITY_EARTH = 9.80665f; /** * The Moon's gravity in SI units (m/s^2) */ public static final float GRAVITY_MOON = 1.6f; /** * Mars' gravity in SI units (m/s^2) */ public static final float GRAVITY_MARS = 3.71f; /** * Jupiter's gravity in SI units (m/s^2) */ public static final float GRAVITY_JUPITER = 23.12f; /** * Saturn's gravity in SI units (m/s^2) */ public static final float GRAVITY_SATURN = 8.96f; /** * Uranus' gravity in SI units (m/s^2) */ public static final float GRAVITY_URANUS = 8.69f; /** * Neptune's gravity in SI units (m/s^2) */ public static final float GRAVITY_NEPTUNE = 11.0f; /** * Pluto's gravity in SI units (m/s^2) */ public static final float GRAVITY_PLUTO = 0.6f; /** * Gravity (estimate) on the first Death Star in Empire units (m/s^2) */ public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f; /** * Gravity on the island */ public static final float GRAVITY_THE_ISLAND = 4.815162342f; /** * Maximum magnetic field on Earth's surface */ public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f; /** * Minimum magnetic field on Earth's surface */ public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f; /** * Standard atmosphere, or average sea-level pressure in hPa (millibar) */ public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f; /** * Maximum luminance of sunlight in lux */ public static final float LIGHT_SUNLIGHT_MAX = 120000.0f; /** * luminance of sunlight in lux */ public static final float LIGHT_SUNLIGHT = 110000.0f; /** * luminance in shade in lux */ public static final float LIGHT_SHADE = 20000.0f; /** * luminance under an overcast sky in lux */ public static final float LIGHT_OVERCAST = 10000.0f; /** * luminance at sunrise in lux */ public static final float LIGHT_SUNRISE = 400.0f; /** * luminance under a cloudy sky in lux */ public static final float LIGHT_CLOUDY = 100.0f; /** * luminance at night with full moon in lux */ public static final float LIGHT_FULLMOON = 0.25f; /** * luminance at night with no moon in lux */ public static final float LIGHT_NO_MOON = 0.001f; /** * get sensor data as fast as possible */ public static final int SENSOR_DELAY_FASTEST = 0; /** * rate suitable for games */ public static final int SENSOR_DELAY_GAME = 1; /** * rate suitable for the user interface */ public static final int SENSOR_DELAY_UI = 2; /** * rate (default) suitable for screen orientation changes */ public static final int SENSOR_DELAY_NORMAL = 3; /** * The values returned by this sensor cannot be trusted, calibration is * needed or the environment doesn't allow readings */ public static final int SENSOR_STATUS_UNRELIABLE = 0; /** * This sensor is reporting data with low accuracy, calibration with the * environment is needed */ public static final int SENSOR_STATUS_ACCURACY_LOW = 1; /** * This sensor is reporting data with an average level of accuracy, * calibration with the environment may improve the readings */ public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2; /** * This sensor is reporting data with maximum accuracy */ public static final int SENSOR_STATUS_ACCURACY_HIGH = 3; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_X = 1; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_Y = 2; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_Z = 3; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_X = AXIS_X | 0x80; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_Y = AXIS_Y | 0x80; /** * see {@link #remapCoordinateSystem} */ public static final int AXIS_MINUS_Z = AXIS_Z | 0x80; /*-----------------------------------------------------------------------*/ private static boolean sSensorModuleInitialized = false; private SensorEventService sensorEventService; private EventHandler mEventHandler; // Used within this module from outside SensorManager, don't make private static ArrayList mSensors = new ArrayList(); static final ArrayList mListeners = new ArrayList(); class FullListener { SensorEventListener sensorEventListener; int rate; Handler handler; Sensor sensor; } /** * */ public SensorManager() { if (!sSensorModuleInitialized) { Looper looper; if ((looper = Looper.myLooper()) != null) { mEventHandler = new EventHandler(looper); } else if ((looper = Looper.getMainLooper()) != null) { mEventHandler = new EventHandler(looper); } else { mEventHandler = null; } sSensorModuleInitialized = true; // initialize the sensor list mSensors = new ArrayList(); addAccelerometerSensor(); addMagneticFieldSensor(); addOrientationSensor(); sensorEventService = new SensorEventService(this, mEventHandler); sensorEventService.start(); } } public List getListeners() { return mListeners; } private void addAccelerometerSensor() { Sensor sensor = new Sensor(); sensor.setType(Sensor.TYPE_ACCELEROMETER); synchronized (mSensors) { mSensors.add(sensor); } } private void addMagneticFieldSensor() { Sensor sensor = new Sensor(); sensor.setType(Sensor.TYPE_MAGNETIC_FIELD); synchronized (mSensors) { mSensors.add(sensor); } } private void addOrientationSensor() { Sensor sensor = new Sensor(); sensor.setType(Sensor.TYPE_ORIENTATION); sensor.setMaxRange(360.0f); sensor.setRange(360.0f, 1.0f); synchronized (mSensors) { mSensors.add(sensor); } } public class EventHandler extends Handler { public static final int NEW_VALUE = 0; public EventHandler(Looper looper) { super(looper); } @Override public void handleMessage(Message msg) { switch (msg.what) { case NEW_VALUE: notifySensorChangedToListener((SensorEvent) msg.obj); return; default: Log.e(TAG, "Unknown message type " + msg.what); return; } } } public void notifySensorChangedToListener(SensorEvent se) { System.out.println("notifySensorChangedToListener!!"); synchronized (mListeners) { for (FullListener fl : mListeners) { if (fl.sensor.getType() == se.sensor.getType()) { fl.sensorEventListener.onSensorChanged(se); } } } } /** * @return available sensors. * @deprecated This method is deprecated, use * {@link SensorManager#getSensorList(int)} instead */ @Deprecated public int getSensors() { synchronized (mSensors) { int result = 0; final ArrayList fullList = mSensors; for (Sensor i : fullList) { switch (i.getType()) { case Sensor.TYPE_ACCELEROMETER: result |= SensorManager.SENSOR_ACCELEROMETER; break; case Sensor.TYPE_MAGNETIC_FIELD: result |= SensorManager.SENSOR_MAGNETIC_FIELD; break; case Sensor.TYPE_ORIENTATION: result |= SensorManager.SENSOR_ORIENTATION | SensorManager.SENSOR_ORIENTATION_RAW; break; } } return result; } } /** * Use this method to get the list of available sensors of a certain type. * Make multiple calls to get sensors of different types or use * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the * sensors. * * @param type of sensors requested * * @return a list of sensors matching the asked type. * * @see #getDefaultSensor(int) * @see Sensor */ public List getSensorList(int type) { // cache the returned lists the first time List list = new ArrayList(); synchronized (mSensors) { if (type == Sensor.TYPE_ALL) { list.addAll(mSensors); } else { for (Sensor s : mSensors) { if (s.getType() == type) { list.add(s); } } } } return list; } /** * Use this method to get the default sensor for a given type. Note that the * returned sensor could be a composite sensor, and its data could be * averaged or filtered. If you need to access the raw sensors use * {@link SensorManager#getSensorList(int) getSensorList}. * * @param type of sensors requested * * @return the default sensors matching the asked type. * * @see #getSensorList(int) * @see Sensor */ public Sensor getDefaultSensor(int type) { // TODO: need to be smarter, for now, just return the 1st sensor List l = getSensorList(type); return l.isEmpty() ? null : l.get(0); } /** * Registers a listener for given sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} * instead. * * @param listener sensor listener object * * @param sensors a bit masks of the sensors to register to * * @return true if the sensor is supported and successfully * enabled */ @Deprecated public boolean registerListener(SensorListener listener, int sensors) { return registerListener(listener, sensors, SENSOR_DELAY_NORMAL); } /** * Registers a SensorListener for given sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} * instead. * * @param listener sensor listener object * * @param sensors a bit masks of the sensors to register to * * @param rate rate of events. This is only a hint to the system. events may * be received faster or slower than the specified rate. Usually events are * received faster. The value must be one of null {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. * * @return true if the sensor is supported and successfully * enabled */ @Deprecated public boolean registerListener(SensorListener listener, int sensors, int rate) { if (listener == null) { return false; } boolean result = false; result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION, listener, sensors, rate) || result; result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE, listener, sensors, rate) || result; return result; } @SuppressWarnings("deprecation") private boolean registerLegacyListener(int legacyType, int type, SensorListener listener, int sensors, int rate) { return true; /* * if (listener == null) { return false; } boolean result = false; // * Are we activating this legacy sensor? if ((sensors & legacyType) != * 0) { // if so, find a suitable Sensor Sensor sensor = * getDefaultSensor(type); if (sensor != null) { // If we don't already * have one, create a LegacyListener // to wrap this listener and * process the events as // they are expected by legacy apps. * LegacyListener legacyListener = null; synchronized * (mLegacyListenersMap) { legacyListener = * mLegacyListenersMap.get(listener); if (legacyListener == null) { // * we didn't find a LegacyListener for this client, // create one, and * put it in our list. legacyListener = new LegacyListener(listener); * mLegacyListenersMap.put(listener, legacyListener); } } // register * this legacy sensor with this legacy listener * legacyListener.registerSensor(legacyType); // and finally, register * the legacy listener with the new apis result = * registerListener(legacyListener, sensor, rate); } } return result; */ } /** * Unregisters a listener for the sensors with which it is registered. * * @deprecated This method is deprecated, use * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)} * instead. * * @param listener a SensorListener object * * @param sensors a bit masks of the sensors to unregister from */ @Deprecated public void unregisterListener(SensorListener listener, int sensors) { unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER, listener, sensors); unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD, listener, sensors); unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION, listener, sensors); unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION, listener, sensors); unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE, listener, sensors); } @SuppressWarnings("deprecation") private void unregisterLegacyListener(int legacyType, int type, SensorListener listener, int sensors) { /* * if (listener == null) { return; } // do we know about this listener? * LegacyListener legacyListener = null; synchronized * (mLegacyListenersMap) { legacyListener = * mLegacyListenersMap.get(listener); } if (legacyListener != null) { // * Are we deactivating this legacy sensor? if ((sensors & legacyType) != * 0) { // if so, find the corresponding Sensor Sensor sensor = * getDefaultSensor(type); if (sensor != null) { // unregister this * legacy sensor and if we don't // need the corresponding Sensor, * unregister it too if (legacyListener.unregisterSensor(legacyType)) { * // corresponding sensor not needed, unregister * unregisterListener(legacyListener, sensor); // finally check if we * still need the legacyListener // in our mapping, if not, get rid of * it too. synchronized (sListeners) { boolean found = false; for * (ListenerDelegate i : sListeners) { if (i.getListener() == * legacyListener) { found = true; break; } } if (!found) { synchronized * (mLegacyListenersMap) { mLegacyListenersMap.remove(listener); } } } } * } } } */ } /** * Unregisters a listener for all sensors. * * @deprecated This method is deprecated, use * {@link SensorManager#unregisterListener(SensorEventListener)} instead. * * @param listener a SensorListener object */ @Deprecated public void unregisterListener(SensorListener listener) { unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW); } /** * Unregisters a listener for the sensors with which it is registered. * * @param listener a SensorEventListener object * * @param sensor the sensor to unregister from * * @see #unregisterListener(SensorEventListener) * @see #registerListener(SensorEventListener, Sensor, int) * */ public void unregisterListener(SensorEventListener listener, Sensor sensor) { unregisterListener((Object) listener, sensor); } /** * Unregisters a listener for all sensors. * * @param listener a SensorListener object * * @see #unregisterListener(SensorEventListener, Sensor) * @see #registerListener(SensorEventListener, Sensor, int) * */ public void unregisterListener(SensorEventListener listener) { unregisterListener((Object) listener); } /** * Registers a {@link android.hardware.SensorEventListener * SensorEventListener} for the given sensor. * * @param listener A {@link android.hardware.SensorEventListener * SensorEventListener} object. * * @param sensor The {@link android.hardware.Sensor Sensor} to register to. * * @param rate The rate {@link android.hardware.SensorEvent sensor events} * are delivered at. This is only a hint to the system. Events may be * received faster or slower than the specified rate. Usually events are * received faster. The value must be one of null {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the * desired delay between events in microsecond. * * @return true if the sensor is supported and successfully * enabled. * * @see #registerListener(SensorEventListener, Sensor, int, Handler) * @see #unregisterListener(SensorEventListener) * @see #unregisterListener(SensorEventListener, Sensor) * */ public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) { return registerListener(listener, sensor, rate, null); } /** * Registers a {@link android.hardware.SensorEventListener * SensorEventListener} for the given sensor. * * @param listener A {@link android.hardware.SensorEventListener * SensorEventListener} object. * * @param sensor The {@link android.hardware.Sensor Sensor} to register to. * * @param rate The rate {@link android.hardware.SensorEvent sensor events} * are delivered at. This is only a hint to the system. Events may be * received faster or slower than the specified rate. Usually events are * received faster. The value must be one of null {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. or, the * desired delay between events in microsecond. * * @param handler The {@link android.os.Handler Handler} the * {@link android.hardware.SensorEvent sensor events} will be delivered to. * * @return true if the sensor is supported and successfully enabled. * * @see #registerListener(SensorEventListener, Sensor, int) * @see #unregisterListener(SensorEventListener) * @see #unregisterListener(SensorEventListener, Sensor) * */ public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate, Handler handler) { if (listener == null || sensor == null) { return false; } boolean result = true; int delay = -1; switch (rate) { case SENSOR_DELAY_FASTEST: delay = 0; break; case SENSOR_DELAY_GAME: delay = 20000; break; case SENSOR_DELAY_UI: delay = 60000; break; case SENSOR_DELAY_NORMAL: delay = 200000; break; default: delay = rate; break; } synchronized (mListeners) { for (FullListener fl : mListeners) { if (fl.sensorEventListener == listener && fl.sensor == sensor) { return true; } } FullListener fl = new FullListener(); fl.handler = handler; fl.rate = delay; fl.sensorEventListener = listener; fl.sensor = sensor; mListeners.add(fl); result = true; } /* * // look for this listener in our list ListenerDelegate l = null; for * (ListenerDelegate i : sListeners) { if (i.getListener() == listener) * { l = i; break; } } // if we don't find it, add it to the list if (l * == null) { l = new ListenerDelegate(listener, sensor, handler); * sListeners.add(l); // if the list is not empty, start our main thread * if (!sListeners.isEmpty()) { if (sSensorThread.startLocked()) { if * (!enableSensorLocked(sensor, delay)) { // oops. there was an error * sListeners.remove(l); result = false; } } else { // there was an * error, remove the listener sListeners.remove(l); result = false; } } * else { // weird, we couldn't add the listener result = false; } } * else { l.addSensor(sensor); if (!enableSensorLocked(sensor, delay)) { * // oops. there was an error l.removeSensor(sensor); result = false; } * } */ return result; } private void unregisterListener(Object listener, Sensor sensor) { if (listener == null || sensor == null) { return; } synchronized (mListeners) { final int size = mListeners.size(); for (int i = 0; i < size; i++) { FullListener fl = mListeners.get(i); if (fl.sensorEventListener == listener && fl.sensor == sensor) { mListeners.remove(i); break; } } } } private void unregisterListener(Object listener) { if (listener == null) { return; } synchronized (mListeners) { int size = mListeners.size(); for (int i = 0; i < size; i++) { FullListener fl = mListeners.get(i); if (fl.sensorEventListener == listener) { mListeners.remove(i); size = mListeners.size(); i = 0; } } if(mListeners.isEmpty()) { sensorEventService.stop(); sSensorModuleInitialized = false; } } } /** *

* Computes the inclination matrix I as well as the rotation matrix * R transforming a vector from the device coordinate system to the * world's coordinate system which is defined as a direct orthonormal basis, * where: *

* *
    *
  • X is defined as the vector product Y.Z (It is tangential to * the ground at the device's current location and roughly points * East).
  • *
  • Y is tangential to the ground at the device's current location and * points towards the magnetic North Pole.
  • *
  • Z points towards the sky and is perpendicular to the ground.
  • *
* *

*

World
     * coordinate-system diagram.
*

* *

*


*

* By definition: *

* [0 0 g] = R * gravity (g = magnitude of gravity) *

* [0 m 0] = I * R * geomagnetic (m = magnitude of * geomagnetic field) *

* R is the identity matrix when the device is aligned with the * world's coordinate system, that is, when the device's X axis points * toward East, the Y axis points to the North Pole and the device is facing * the sky. * *

* I is a rotation matrix transforming the geomagnetic vector into * the same coordinate space as gravity (the world's coordinate space). * I is a simple rotation around the X axis. The inclination angle in * radians can be computed with {@link #getInclination}. *


* *

* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending * on the length of the passed array: *

* If the array length is 16: * *

     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
     *   \  M[12]   M[13]   M[14]   M[15]  /
     * 
* * This matrix is ready to be used by OpenGL ES's null {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) * glLoadMatrixf(float[], int)}. *

* Note that because OpenGL matrices are column-major matrices you must * transpose the matrix before using it. However, since the matrix is a * rotation matrix, its transpose is also its inverse, conveniently, it is * often the inverse of the rotation that is needed for rendering; it can * therefore be used with OpenGL ES directly. *

* Also note that the returned matrices always have this form: * *

     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
     *   |  M[ 8]   M[ 9]   M[10]   0  |
     *   \      0       0       0   1  /
     * 
* *

* If the array length is 9: * *

     *   /  M[ 0]   M[ 1]   M[ 2]  \
     *   |  M[ 3]   M[ 4]   M[ 5]  |
     *   \  M[ 6]   M[ 7]   M[ 8]  /
     * 
* *
*

* The inverse of each matrix can be computed easily by taking its * transpose. * *

* The matrices returned by this function are meaningful only when the * device is not free-falling and it is not close to the magnetic north. If * the device is accelerating, or placed into a strong magnetic field, the * returned matrices may be inaccurate. * * @param R is an array of 9 floats holding the rotation matrix R * when this function returns. R can be null. *

* * @param I is an array of 9 floats holding the rotation matrix I * when this function returns. I can be null. *

* * @param gravity is an array of 3 floats containing the gravity vector * expressed in the device's coordinate. You can simply use the * {@link android.hardware.SensorEvent#values values} returned by a * {@link android.hardware.SensorEvent SensorEvent} of a * {@link android.hardware.Sensor Sensor} of type null {@link android.hardware.Sensor#TYPE_ACCELEROMETER * TYPE_ACCELEROMETER}. *

* * @param geomagnetic is an array of 3 floats containing the geomagnetic * vector expressed in the device's coordinate. You can simply use the * {@link android.hardware.SensorEvent#values values} returned by a * {@link android.hardware.SensorEvent SensorEvent} of a * {@link android.hardware.Sensor Sensor} of type null {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD * TYPE_MAGNETIC_FIELD}. * * @return true on success, false on failure (for * instance, if the device is in free fall). On failure the output matrices * are not modified. * * @see #getInclination(float[]) * @see #getOrientation(float[], float[]) * @see #remapCoordinateSystem(float[], int, int, float[]) */ public static boolean getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic) { // TODO: move this to native code for efficiency float Ax = gravity[0]; float Ay = gravity[1]; float Az = gravity[2]; final float Ex = geomagnetic[0]; final float Ey = geomagnetic[1]; final float Ez = geomagnetic[2]; float Hx = Ey * Az - Ez * Ay; float Hy = Ez * Ax - Ex * Az; float Hz = Ex * Ay - Ey * Ax; final float normH = (float) Math.sqrt(Hx * Hx + Hy * Hy + Hz * Hz); if (normH < 0.1f) { // device is close to free fall (or in space?), or close to // magnetic north pole. Typical values are > 100. return false; } final float invH = 1.0f / normH; Hx *= invH; Hy *= invH; Hz *= invH; final float invA = 1.0f / (float) Math .sqrt(Ax * Ax + Ay * Ay + Az * Az); Ax *= invA; Ay *= invA; Az *= invA; final float Mx = Ay * Hz - Az * Hy; final float My = Az * Hx - Ax * Hz; final float Mz = Ax * Hy - Ay * Hx; if (R != null) { if (R.length == 9) { R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = Mx; R[4] = My; R[5] = Mz; R[6] = Ax; R[7] = Ay; R[8] = Az; } else if (R.length == 16) { R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0; R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0; R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0; R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1; } } if (I != null) { // compute the inclination matrix by projecting the geomagnetic // vector onto the Z (gravity) and X (horizontal component // of geomagnetic vector) axes. final float invE = 1.0f / (float) Math.sqrt(Ex * Ex + Ey * Ey + Ez * Ez); final float c = (Ex * Mx + Ey * My + Ez * Mz) * invE; final float s = (Ex * Ax + Ey * Ay + Ez * Az) * invE; if (I.length == 9) { I[0] = 1; I[1] = 0; I[2] = 0; I[3] = 0; I[4] = c; I[5] = s; I[6] = 0; I[7] = -s; I[8] = c; } else if (I.length == 16) { I[0] = 1; I[1] = 0; I[2] = 0; I[4] = 0; I[5] = c; I[6] = s; I[8] = 0; I[9] = -s; I[10] = c; I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0; I[15] = 1; } } return true; } /** * Computes the geomagnetic inclination angle in radians from the * inclination matrix I returned by {@link #getRotationMatrix}. * * @param I inclination matrix see {@link #getRotationMatrix}. * * @return The geomagnetic inclination angle in radians. * * @see #getRotationMatrix(float[], float[], float[], float[]) * @see #getOrientation(float[], float[]) * @see GeomagneticField * */ public static float getInclination(float[] I) { if (I.length == 9) { return (float) Math.atan2(I[5], I[4]); } else { return (float) Math.atan2(I[6], I[5]); } } /** *

* Rotates the supplied rotation matrix so it is expressed in a different * coordinate system. This is typically used when an application needs to * compute the three orientation angles of the device (see * {@link #getOrientation}) in a different coordinate system. *

* *

* When the rotation matrix is used for drawing (for instance with OpenGL * ES), it usually doesn't need to be transformed by this function, * unless the screen is physically rotated, in which case you can use * {@link android.view.Display#getRotation() Display.getRotation()} to * retrieve the current rotation of the screen. Note that because the user * is generally free to rotate their screen, you often should consider the * rotation in deciding the parameters to use here. *

* *

* Examples: *

* *

    *
  • Using the camera (Y axis along the camera's axis) for an augmented * reality application where the rotation angles are needed:
  • * *

    *

      * remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR); *
    *

    * *
  • Using the device as a mechanical compass when rotation is * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:
  • * *

    *

      * remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR); *
    *

    * * Beware of the above example. This call is needed only to account for a * rotation from its natural orientation when calculating the rotation * angles (see {@link #getOrientation}). If the rotation matrix is also used * for rendering, it may not need to be transformed, for instance if your * {@link android.app.Activity Activity} is running in landscape mode. *
* *

* Since the resulting coordinate system is orthonormal, only two axes need * to be specified. * * @param inR the rotation matrix to be transformed. Usually it is the * matrix returned by {@link #getRotationMatrix}. * * @param X defines on which world axis and direction the X axis of the * device is mapped. * * @param Y defines on which world axis and direction the Y axis of the * device is mapped. * * @param outR the transformed rotation matrix. inR and outR can be the same * array, but it is not recommended for performance reason. * * @return true on success. false if the input * parameters are incorrect, for instance if X and Y define the same axis. * Or if inR and outR don't have the same length. * * @see #getRotationMatrix(float[], float[], float[], float[]) */ public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) { if (inR == outR) { final float[] temp = mTempMatrix; synchronized (temp) { // we don't expect to have a lot of contention if (remapCoordinateSystemImpl(inR, X, Y, temp)) { final int size = outR.length; for (int i = 0; i < size; i++) { outR[i] = temp[i]; } return true; } } } return remapCoordinateSystemImpl(inR, X, Y, outR); } private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR) { /* * X and Y define a rotation matrix 'r': * * (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 * (X==3)?((X&0x80)?-1:1):0 (Y==1)?((Y&0x80)?-1:1):0 * (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0 r[0] ^ r[1] * * where the 3rd line is the vector product of the first 2 lines */ final int length = outR.length; if (inR.length != length) { return false; // invalid parameter } if ((X & 0x7C) != 0 || (Y & 0x7C) != 0) { return false; // invalid parameter } if (((X & 0x3) == 0) || ((Y & 0x3) == 0)) { return false; // no axis specified } if ((X & 0x3) == (Y & 0x3)) { return false; // same axis specified } // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y) // this can be calculated by exclusive-or'ing X and Y; except for // the sign inversion (+/-) which is calculated below. int Z = X ^ Y; // extract the axis (remove the sign), offset in the range 0 to 2. final int x = (X & 0x3) - 1; final int y = (Y & 0x3) - 1; final int z = (Z & 0x3) - 1; // compute the sign of Z (whether it needs to be inverted) final int axis_y = (z + 1) % 3; final int axis_z = (z + 2) % 3; if (((x ^ axis_y) | (y ^ axis_z)) != 0) { Z ^= 0x80; } final boolean sx = (X >= 0x80); final boolean sy = (Y >= 0x80); final boolean sz = (Z >= 0x80); // Perform R * r, in avoiding actual muls and adds. final int rowLength = ((length == 16) ? 4 : 3); for (int j = 0; j < 3; j++) { final int offset = j * rowLength; for (int i = 0; i < 3; i++) { if (x == i) { outR[offset + i] = sx ? -inR[offset + 0] : inR[offset + 0]; } if (y == i) { outR[offset + i] = sy ? -inR[offset + 1] : inR[offset + 1]; } if (z == i) { outR[offset + i] = sz ? -inR[offset + 2] : inR[offset + 2]; } } } if (length == 16) { outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0; outR[15] = 1; } return true; } /** * Computes the device's orientation based on the rotation matrix. *

* When it returns, the array values is filled with the result: *

    *
  • values[0]: azimuth, rotation around the Z axis.
  • *
  • values[1]: pitch, rotation around the X axis.
  • *
  • values[2]: roll, rotation around the Y axis.
  • *
*

* The reference coordinate-system used is different from the world * coordinate-system defined for the rotation matrix: *

*
    *
  • X is defined as the vector product Y.Z (It is tangential to * the ground at the device's current location and roughly points * West).
  • *
  • Y is tangential to the ground at the device's current location and * points towards the magnetic North Pole.
  • *
  • Z points towards the center of the Earth and is perpendicular to the * ground.
  • *
* *

*

Inverted
     * world coordinate-system diagram.
*

*

* All three angles above are in radians and positive in the * counter-clockwise direction. * * @param R rotation matrix see {@link #getRotationMatrix}. * * @param values an array of 3 floats to hold the result. * * @return The array values passed as argument. * * @see #getRotationMatrix(float[], float[], float[], float[]) * @see GeomagneticField */ public static float[] getOrientation(float[] R, float values[]) { /* * 4x4 (length=16) case: / R[ 0] R[ 1] R[ 2] 0 \ | R[ 4] R[ 5] R[ 6] 0 | * | R[ 8] R[ 9] R[10] 0 | \ 0 0 0 1 / * * 3x3 (length=9) case: / R[ 0] R[ 1] R[ 2] \ | R[ 3] R[ 4] R[ 5] | \ R[ * 6] R[ 7] R[ 8] / */ if (R.length == 9) { values[0] = (float) Math.atan2(R[1], R[4]); values[1] = (float) Math.asin(-R[7]); values[2] = (float) Math.atan2(-R[6], R[8]); } else { values[0] = (float) Math.atan2(R[1], R[5]); values[1] = (float) Math.asin(-R[9]); values[2] = (float) Math.atan2(-R[8], R[10]); } return values; } /** * Computes the Altitude in meters from the atmospheric pressure and the * pressure at sea level. *

* Typically the atmospheric pressure is read from a * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be * known, usually it can be retrieved from airport databases in the * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} * as an approximation, but absolute altitudes won't be accurate. *

*

* To calculate altitude differences, you must calculate the difference * between the altitudes at both points. If you don't know the altitude as * sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead, * which will give good results considering the range of pressure typically * involved. *

*

*

    * float altitude_difference = * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, * pressure_at_point2) - * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, * pressure_at_point1); *
*

* * @param p0 pressure at sea level * @param p atmospheric pressure * @return Altitude in meters */ public static float getAltitude(float p0, float p) { final float coef = 1.0f / 5.255f; return 44330.0f * (1.0f - (float) Math.pow(p / p0, coef)); } class LmsFilter { private static final int SENSORS_RATE_MS = 20; private static final int COUNT = 12; private static final float PREDICTION_RATIO = 1.0f / 3.0f; private static final float PREDICTION_TIME = (SENSORS_RATE_MS * COUNT / 1000.0f) * PREDICTION_RATIO; private float mV[] = new float[COUNT * 2]; private float mT[] = new float[COUNT * 2]; private int mIndex; public LmsFilter() { mIndex = COUNT; } public float filter(long time, float in) { float v = in; final float ns = 1.0f / 1000000000.0f; final float t = time * ns; float v1 = mV[mIndex]; if ((v - v1) > 180) { v -= 360; } else if ((v1 - v) > 180) { v += 360; } /* * Manage the circular buffer, we write the data twice spaced by * COUNT values, so that we don't have to copy the array when it's * full */ mIndex++; if (mIndex >= COUNT * 2) { mIndex = COUNT; } mV[mIndex] = v; mT[mIndex] = t; mV[mIndex - COUNT] = v; mT[mIndex - COUNT] = t; float A, B, C, D, E; float a, b; int i; A = B = C = D = E = 0; for (i = 0; i < COUNT - 1; i++) { final int j = mIndex - 1 - i; final float Z = mV[j]; final float T = 0.5f * (mT[j] + mT[j + 1]) - t; float dT = mT[j] - mT[j + 1]; dT *= dT; A += Z * dT; B += T * (T * dT); C += (T * dT); D += Z * (T * dT); E += dT; } b = (A * B + C * D) / (E * B + C * C); a = (E * b - A) / C; float f = b + PREDICTION_TIME * a; // Normalize f *= (1.0f / 360.0f); if (((f >= 0) ? f : -f) >= 0.5f) { f = f - (float) Math.ceil(f + 0.5f) + 1.0f; } if (f < 0) { f += 1.0f; } f *= 360.0f; return f; } } /** * Helper function to compute the angle change between two rotation * matrices. Given a current rotation matrix (R) and a previous rotation * matrix (prevR) computes the rotation around the x,y, and z axes which * transforms prevR to R. outputs a 3 element vector containing the x,y, and * z angle change at indexes 0, 1, and 2 respectively. *

* Each input matrix is either as a 3x3 or 4x4 row-major matrix depending on * the length of the passed array: *

* If the array length is 9, then the array elements represent this matrix * *

     *   /  R[ 0]   R[ 1]   R[ 2]   \
     *   |  R[ 3]   R[ 4]   R[ 5]   |
     *   \  R[ 6]   R[ 7]   R[ 8]   /
     * 
*

* If the array length is 16, then the array elements represent this matrix * *

     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
     *   \  R[12]   R[13]   R[14]   R[15]  /
     * 
* * @param R current rotation matrix * @param prevR previous rotation matrix * @param angleChange an array of floats in which the angle change is stored */ public static void getAngleChange(float[] angleChange, float[] R, float[] prevR) { float rd1 = 0, rd4 = 0, rd6 = 0, rd7 = 0, rd8 = 0; float ri0 = 0, ri1 = 0, ri2 = 0, ri3 = 0, ri4 = 0, ri5 = 0, ri6 = 0, ri7 = 0, ri8 = 0; float pri0 = 0, pri1 = 0, pri2 = 0, pri3 = 0, pri4 = 0, pri5 = 0, pri6 = 0, pri7 = 0, pri8 = 0; int i, j, k; if (R.length == 9) { ri0 = R[0]; ri1 = R[1]; ri2 = R[2]; ri3 = R[3]; ri4 = R[4]; ri5 = R[5]; ri6 = R[6]; ri7 = R[7]; ri8 = R[8]; } else if (R.length == 16) { ri0 = R[0]; ri1 = R[1]; ri2 = R[2]; ri3 = R[4]; ri4 = R[5]; ri5 = R[6]; ri6 = R[8]; ri7 = R[9]; ri8 = R[10]; } if (prevR.length == 9) { pri0 = prevR[0]; pri1 = prevR[1]; pri2 = prevR[2]; pri3 = prevR[3]; pri4 = prevR[4]; pri5 = prevR[5]; pri6 = prevR[6]; pri7 = prevR[7]; pri8 = prevR[8]; } else if (prevR.length == 16) { pri0 = prevR[0]; pri1 = prevR[1]; pri2 = prevR[2]; pri3 = prevR[4]; pri4 = prevR[5]; pri5 = prevR[6]; pri6 = prevR[8]; pri7 = prevR[9]; pri8 = prevR[10]; } // calculate the parts of the rotation difference matrix we need // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * // ri[2][j]; rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; // rd[0][1] rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; // rd[1][1] rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; // rd[2][0] rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; // rd[2][1] rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; // rd[2][2] angleChange[0] = (float) Math.atan2(rd1, rd4); angleChange[1] = (float) Math.asin(-rd7); angleChange[2] = (float) Math.atan2(-rd6, rd8); } /** * Helper function to convert a rotation vector to a rotation matrix. Given * a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a 9 * or 16 element rotation matrix in the array R. R must have length 9 or 16. * If R.length == 9, the following matrix is returned: * *
     *   /  R[ 0]   R[ 1]   R[ 2]   \
     *   |  R[ 3]   R[ 4]   R[ 5]   |
     *   \  R[ 6]   R[ 7]   R[ 8]   /
     * 
* * If R.length == 16, the following matrix is returned: * *
     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
     *   |  R[ 8]   R[ 9]   R[10]   0  |
     *   \  0       0       0       1  /
     * 
* * @param rotationVector the rotation vector to convert * @param R an array of floats in which to store the rotation matrix */ public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) { float q0; float q1 = rotationVector[0]; float q2 = rotationVector[1]; float q3 = rotationVector[2]; if (rotationVector.length == 4) { q0 = rotationVector[3]; } else { q0 = 1 - q1 * q1 - q2 * q2 - q3 * q3; q0 = (q0 > 0) ? (float) Math.sqrt(q0) : 0; } float sq_q1 = 2 * q1 * q1; float sq_q2 = 2 * q2 * q2; float sq_q3 = 2 * q3 * q3; float q1_q2 = 2 * q1 * q2; float q3_q0 = 2 * q3 * q0; float q1_q3 = 2 * q1 * q3; float q2_q0 = 2 * q2 * q0; float q2_q3 = 2 * q2 * q3; float q1_q0 = 2 * q1 * q0; if (R.length == 9) { R[0] = 1 - sq_q2 - sq_q3; R[1] = q1_q2 - q3_q0; R[2] = q1_q3 + q2_q0; R[3] = q1_q2 + q3_q0; R[4] = 1 - sq_q1 - sq_q3; R[5] = q2_q3 - q1_q0; R[6] = q1_q3 - q2_q0; R[7] = q2_q3 + q1_q0; R[8] = 1 - sq_q1 - sq_q2; } else if (R.length == 16) { R[0] = 1 - sq_q2 - sq_q3; R[1] = q1_q2 - q3_q0; R[2] = q1_q3 + q2_q0; R[3] = 0.0f; R[4] = q1_q2 + q3_q0; R[5] = 1 - sq_q1 - sq_q3; R[6] = q2_q3 - q1_q0; R[7] = 0.0f; R[8] = q1_q3 - q2_q0; R[9] = q2_q3 + q1_q0; R[10] = 1 - sq_q1 - sq_q2; R[11] = 0.0f; R[12] = R[13] = R[14] = 0.0f; R[15] = 1.0f; } } /** * Helper function to convert a rotation vector to a normalized quaternion. * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), * returns a normalized quaternion in the array Q. The quaternion is stored * as [w, x, y, z] * * @param rv the rotation vector to convert * @param Q an array of floats in which to store the computed quaternion */ public static void getQuaternionFromVector(float[] Q, float[] rv) { if (rv.length == 4) { Q[0] = rv[3]; } else { Q[0] = 1 - rv[0] * rv[0] - rv[1] * rv[1] - rv[2] * rv[2]; Q[0] = (Q[0] > 0) ? (float) Math.sqrt(Q[0]) : 0; } Q[1] = rv[0]; Q[2] = rv[1]; Q[3] = rv[2]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy