All Downloads are FREE. Search and download functionalities are using the official Maven repository.

JSci.maths.matrices.DoubleSquareMatrix Maven / Gradle / Ivy

Go to download

JSci is a set of open source Java packages. The aim is to encapsulate scientific methods/principles in the most natural way possible. As such they should greatly aid the development of scientific based software. It offers: abstract math interfaces, linear algebra (support for various matrix and vector types), statistics (including probability distributions), wavelets, newtonian mechanics, chart/graph components (AWT and Swing), MathML DOM implementation, ... Note: some packages, like javax.comm, for the astro and instruments package aren't listed as dependencies (not available).

The newest version!
/* AUTO-GENERATED */
package JSci.maths.matrices;

import JSci.maths.ArrayMath;
import JSci.maths.ExtraMath;
import JSci.maths.LinearMath;
import JSci.maths.Mapping;
import JSci.maths.DimensionException;
import JSci.maths.MaximumIterationsExceededException;
import JSci.maths.vectors.AbstractDoubleVector;
import JSci.maths.vectors.DoubleVector;
import JSci.maths.groups.AbelianGroup;
import JSci.maths.algebras.*;
import JSci.maths.fields.*;

/**
* The DoubleSquareMatrix class provides an object for encapsulating double square matrices.
* @version 2.3
* @author Mark Hale
*/
public class DoubleSquareMatrix extends AbstractDoubleSquareMatrix {
        /**
        * Array containing the elements of the matrix.
        */
        protected final double matrix[][];
        /**
        * Constructs a matrix by wrapping an array.
        * @param array an assigned value
        */
        public DoubleSquareMatrix(final double array[][]) {
                super(array.length);
                if(!ArrayMath.isSquare(array))
                        throw new MatrixDimensionException("Array is not square.");
                matrix=array;
        }
        /**
        * Constructs an empty matrix.
        */
        public DoubleSquareMatrix(final int size) {
                this(new double[size][size]);
        }
        /**
        * Constructs a matrix from an array of vectors (columns).
        * @param array an assigned value
        */
        public DoubleSquareMatrix(final AbstractDoubleVector array[]) {
                this(array.length);
                for(int i=0;i=0 && i=0 && j=0 && i=0 && jinfinity-norm.
        * @author Taber Smith
        */
        public double infNorm() {
                double result=0;
                for(int i=0;iresult)
                                result=tmpResult;
                }
                return result;
        }
        /**
        * Returns the Frobenius or Hilbert-Schmidt (l2) norm.
        * @jsci.planetmath FrobeniusMatrixNorm
        */
        public double frobeniusNorm() {
                double result=0.0;
                for(int j,i=0;irows()+1
        * to hold the pivot information (null if not interested).
        * The last array element will contain the parity.
        * @return an array with [0] containing the L-matrix
        * and [1] containing the U-matrix.
        * @jsci.planetmath LUDecomposition
        */
        public final AbstractDoubleSquareMatrix[] luDecompose(int pivot[]) {
                AbstractDoubleSquareMatrix[] LU = luDecompose_cache(pivot);
                if(LU != null)
                    return LU;
                int pivotrow;
                final int N=numRows;
                final double arrayL[][]=new double[N][N];
                final double arrayU[][]=new double[N][N];
                double tmp;
                if(pivot==null)
                        pivot=new int[N+1];
                for(int i=0;imax) {
                                        max=tmp;
                                        pivotrow=i;
                                }
                        }
                // swap row j with pivotrow
                        if(pivotrow!=j) {
                                double[] tmprow = arrayU[j];
                                arrayU[j] = arrayU[pivotrow];
                                arrayU[pivotrow] = tmprow;
                                int k=pivot[j];
                                pivot[j]=pivot[pivotrow];
                                pivot[pivotrow]=k;
                                // update parity
                                pivot[N]=-pivot[N];
                        }
                // divide by pivot
                        tmp=arrayU[j][j];
                        for(int i=j+1;iJAMA (public domain).
        * @return an array with [0] containing the Q-matrix and [1] containing the R-matrix.
        * @jsci.planetmath QRDecomposition
        */
        public AbstractDoubleSquareMatrix[] qrDecompose() {
                final int N=numRows;
                final double array[][]=new double[N][N];
                final double arrayQ[][]=new double[N][N];
                final double arrayR[][]=new double[N][N];
                // copy matrix
                for(int i=0;i=0; k--) {
                        arrayQ[k][k] = 1.0;
                        for(int j=k; jJAMA (public domain).
        * @return an array with [0] containing the U-matrix, [1] containing the S-matrix and [2] containing the V-matrix.
        * @jsci.planetmath SingularValueDecomposition
        */
        public AbstractDoubleSquareMatrix[] singularValueDecompose() {
                final int N=numRows;
                final int Nm1=N-1;
                final double array[][]=new double[N][N];
                final double arrayU[][]=new double[N][N];
                final double arrayS[]=new double[N];
                final double arrayV[][]=new double[N][N];
                final double e[]=new double[N];
                final double work[]=new double[N];
                // copy matrix
                for(int i=0;i=0;k--) {
                        if(arrayS[k]!=0.0) {
                                for(int j=k+1;j=0;k--) {
                        if(k0) {
                        int k, action;
                        // action = 1 if arrayS[p] and e[k-1] are negligible and k

=-1;k--) { if(k==-1) break; if(Math.abs(e[k])<=eps*(Math.abs(arrayS[k])+Math.abs(arrayS[k+1]))) { e[k]=0.0; break; } } if(k==p-2) { action=4; } else { int ks; for(ks=p-1;ks>=k;ks--) { if(ks==k) break; double t=(ks!=p ? Math.abs(e[ks]) : 0.0)+(ks!=k+1 ? Math.abs(e[ks-1]) : 0.0); if(Math.abs(arrayS[ks])<=eps*t) { arrayS[ks]=0.0; break; } } if(ks==k) { action=3; } else if(ks==p-1) { action=1; } else { action=2; k=ks; } } k++; switch(action) { // deflate negligible arrayS[p] case 1: { double f=e[p-2]; e[p-2]=0.0; for(int j=p-2;j>=k;j--) { double t=ExtraMath.hypot(arrayS[j],f); final double cs=arrayS[j]/t; final double sn=f/t; arrayS[j]=t; if(j!=k) { f=-sn*e[j-1]; e[j-1]*=cs; } for(int i=0;i=arrayS[k+1]) break; double tmp=arrayS[k]; arrayS[k]=arrayS[k+1]; arrayS[k+1]=tmp; if(k





© 2015 - 2024 Weber Informatics LLC | Privacy Policy