All Downloads are FREE. Search and download functionalities are using the official Maven repository.

JSci.maths.matrices.IntegerTridiagonalMatrix Maven / Gradle / Ivy

Go to download

JSci is a set of open source Java packages. The aim is to encapsulate scientific methods/principles in the most natural way possible. As such they should greatly aid the development of scientific based software. It offers: abstract math interfaces, linear algebra (support for various matrix and vector types), statistics (including probability distributions), wavelets, newtonian mechanics, chart/graph components (AWT and Swing), MathML DOM implementation, ... Note: some packages, like javax.comm, for the astro and instruments package aren't listed as dependencies (not available).

The newest version!
/* AUTO-GENERATED */
package JSci.maths.matrices;

import JSci.maths.ArrayMath;
import JSci.maths.ExtraMath;
import JSci.maths.Mapping;
import JSci.maths.LinearMath;
import JSci.maths.MaximumIterationsExceededException;
import JSci.maths.DimensionException;
import JSci.maths.vectors.AbstractIntegerVector;
import JSci.maths.vectors.IntegerVector;
import JSci.maths.groups.AbelianGroup;
import JSci.maths.algebras.*;
import JSci.maths.fields.*;

/**
* The IntegerTridiagonalMatrix class provides an object for encapsulating integer tridiagonal matrices.
* @version 2.2
* @author Mark Hale
*/
public class IntegerTridiagonalMatrix extends AbstractIntegerSquareMatrix implements TridiagonalMatrix {
        /**
        * Tridiagonal data.
        */
        protected final int ldiag[];
        protected final int diag[];
        protected final int udiag[];
        /**
        * Constructs an empty matrix.
        * @param size the number of rows/columns
        */
        public IntegerTridiagonalMatrix(final int size) {
                super(size);
                ldiag=new int[size];
                diag=new int[size];
                udiag=new int[size];
        }
        /**
        * Constructs a matrix from an array.
        * Any non-tridiagonal elements in the array are ignored.
        * @param array an assigned value
        * @exception MatrixDimensionException If the array is not square.
        */
        public IntegerTridiagonalMatrix(final int array[][]) {
                this(array.length);
                if(!ArrayMath.isSquare(array))
                        throw new MatrixDimensionException("Array is not square.");
                diag[0]=array[0][0];
                udiag[0]=array[0][1];
                int i=1;
                for(;i=0 && i=0 && j=0 && i=0 && jinfinity-norm.
        * @author Taber Smith
        */
        public int infNorm() {
                int result=Math.abs(diag[0])+Math.abs(udiag[0]);
                int tmpResult;
                int i=1;
                for(;iresult)
                                result=tmpResult;
                }
                tmpResult=Math.abs(ldiag[i])+Math.abs(diag[i]);
                if(tmpResult>result)
                        result=tmpResult;
                return result;
        }
        /**
        * Returns the Frobenius (l2) norm.
        * @author Taber Smith
        */
        public double frobeniusNorm() {
                double result=diag[0]*diag[0]+udiag[0]*udiag[0];
                int i=1;
                for(;i3) {
                                array[1][0]=ldiag[1]*m.diag[0]+diag[1]*m.ldiag[1];
                                array[1][1]=ldiag[1]*m.udiag[0]+diag[1]*m.diag[1]+udiag[1]*m.ldiag[2];
                                array[1][2]=diag[1]*m.udiag[1]+udiag[1]*m.diag[2];
                                array[1][3]=udiag[1]*m.udiag[2];
                        }
                        if(mRow==3) {
                                array[1][0]=ldiag[1]*m.diag[0]+diag[1]*m.ldiag[1];
                                array[1][1]=ldiag[1]*m.udiag[0]+diag[1]*m.diag[1]+udiag[1]*m.ldiag[2];
                                array[1][2]=diag[1]*m.udiag[1]+udiag[1]*m.diag[2];
                        } else if(mRow>4) {
                                for(int i=2;i3) {
                                array[mRow-2][mRow-4]=ldiag[mRow-2]*m.ldiag[mRow-3];
                                array[mRow-2][mRow-3]=ldiag[mRow-2]*m.diag[mRow-3]+diag[mRow-2]*m.ldiag[mRow-2];
                                array[mRow-2][mRow-2]=ldiag[mRow-2]*m.udiag[mRow-3]+diag[mRow-2]*m.diag[mRow-2]+udiag[mRow-2]*m.ldiag[mRow-1];
                                array[mRow-2][mRow-1]=diag[mRow-2]*m.udiag[mRow-2]+udiag[mRow-2]*m.diag[mRow-1];
                        }
                        mRow--;
                        array[mRow][mRow-2]=ldiag[mRow]*m.ldiag[mRow-1];
                        array[mRow][mRow-1]=ldiag[mRow]*m.diag[mRow-1]+diag[mRow]*m.ldiag[mRow];
                        array[mRow][mRow]=ldiag[mRow]*m.udiag[mRow-1]+diag[mRow]*m.diag[mRow];
                        return new IntegerSquareMatrix(array);
                } else
                        throw new MatrixDimensionException("Incompatible matrices.");
        }
        private IntegerSquareMatrix multiplyTridiagonal(final AbstractIntegerSquareMatrix m) {
                int mRow=numRows;
                if(numCols==m.rows()) {
                        final int array[][]=new int[mRow][mRow];
                        array[0][0]=diag[0]*m.getElement(0,0)+udiag[0]*m.getElement(1,0);
                        array[0][1]=diag[0]*m.getElement(0,1)+udiag[0]*m.getElement(1,1);
                        array[0][2]=udiag[0]*m.getElement(1,2);
                        if(mRow>3) {
                                array[1][0]=ldiag[1]*m.getElement(0,0)+diag[1]*m.getElement(1,0);
                                array[1][1]=ldiag[1]*m.getElement(0,1)+diag[1]*m.getElement(1,1)+udiag[1]*m.getElement(2,1);
                                array[1][2]=diag[1]*m.getElement(1,2)+udiag[1]*m.getElement(2,2);
                                array[1][3]=udiag[1]*m.getElement(2,3);
                        }
                        if(mRow==3) {
                                array[1][0]=ldiag[1]*m.getElement(0,0)+diag[1]*m.getElement(1,0);
                                array[1][1]=ldiag[1]*m.getElement(0,1)+diag[1]*m.getElement(1,1)+udiag[1]*m.getElement(2,1);
                                array[1][2]=diag[1]*m.getElement(1,2)+udiag[1]*m.getElement(2,2);
                        } else if(mRow>4) {
                                for(int i=2;i3) {
                                array[mRow-2][mRow-4]=ldiag[mRow-2]*m.getElement(mRow-3,mRow-4);
                                array[mRow-2][mRow-3]=ldiag[mRow-2]*m.getElement(mRow-3,mRow-3)+diag[mRow-2]*m.getElement(mRow-2,mRow-3);
                                array[mRow-2][mRow-2]=ldiag[mRow-2]*m.getElement(mRow-3,mRow-2)+diag[mRow-2]*m.getElement(mRow-2,mRow-2)+udiag[mRow-2]*m.getElement(mRow-1,mRow-2);
                                array[mRow-2][mRow-1]=diag[mRow-2]*m.getElement(mRow-2,mRow-1)+udiag[mRow-2]*m.getElement(mRow-1,mRow-1);
                        }
                        mRow--;
                        array[mRow][mRow-2]=ldiag[mRow]*m.getElement(mRow-1,mRow-2);
                        array[mRow][mRow-1]=ldiag[mRow]*m.getElement(mRow-1,mRow-1)+diag[mRow]*m.getElement(mRow,mRow-1);
                        array[mRow][mRow]=ldiag[mRow]*m.getElement(mRow-1,mRow)+diag[mRow]*m.getElement(mRow,mRow);
                        return new IntegerSquareMatrix(array);
                } else {
                        throw new MatrixDimensionException("Incompatible matrices.");
                }
        }

// TRANSPOSE

        /**
        * Returns the transpose of this matrix.
        * @return a int matrix
        */
        public Matrix transpose() {
                final IntegerTridiagonalMatrix ans=new IntegerTridiagonalMatrix(numRows);
                System.arraycopy(ldiag,1,ans.udiag,0,ldiag.length-1);
                System.arraycopy(diag,0,ans.diag,0,diag.length);
                System.arraycopy(udiag,0,ans.ldiag,1,udiag.length-1);
                return ans;
        }

// CHOLESKY DECOMPOSITION

        /**
        * Returns the Cholesky decomposition of this matrix.
        * Matrix must be symmetric and positive definite.
        * @return an array with [0] containing the L-matrix and [1] containing the U-matrix.
        */
        public AbstractDoubleSquareMatrix[] choleskyDecompose() {
                final int N=numRows;
                final double arrayL[][]=new double[N][N];
                final double arrayU[][]=new double[N][N];
                double tmp=Math.sqrt(diag[0]);
                arrayL[0][0]=arrayU[0][0]=tmp;
                arrayL[1][0]=arrayU[0][1]=ldiag[1]/tmp;
                for(int j=1;jJAMA (public domain).
        * @return an array with [0] containing the Q-matrix and [1] containing the R-matrix.
        * @jsci.planetmath QRDecomposition
        */
        public AbstractDoubleSquareMatrix[] qrDecompose() {
                final int N=numRows;
                final double array[][]=new double[N][N];
                final double arrayQ[][]=new double[N][N];
                final double arrayR[][]=new double[N][N];
                // copy matrix
                array[0][0]=diag[0];
                array[0][1]=udiag[0];
                for(int i=1;i=0; k--) {
                        arrayQ[k][k] = 1.0;
                        for(int j=k; jJAMA (public domain).
        * @return an array with [0] containing the U-matrix, [1] containing the S-matrix and [2] containing the V-matrix.
        */
        public AbstractDoubleSquareMatrix[] singularValueDecompose() {
                final int N=numRows;
                final int Nm1=N-1;
                final double array[][]=new double[N][N];
                final double arrayU[][]=new double[N][N];
                final double arrayS[]=new double[N];
                final double arrayV[][]=new double[N][N];
                final double e[]=new double[N];
                final double work[]=new double[N];
                // copy matrix
                array[0][0]=diag[0];
                array[0][1]=udiag[0];
                for(int i=1;i=0;k--) {
                        if(arrayS[k]!=0.0) {
                                for(int j=k+1;j=0;k--) {
                        if(k0) {
                        int k, action;
                        // action = 1 if arrayS[p] and e[k-1] are negligible and k

=-1;k--) { if(k==-1) break; if(Math.abs(e[k])<=eps*(Math.abs(arrayS[k])+Math.abs(arrayS[k+1]))) { e[k]=0.0; break; } } if(k==p-2) { action=4; } else { int ks; for(ks=p-1;ks>=k;ks--) { if(ks==k) break; double t=(ks!=p ? Math.abs(e[ks]) : 0.0)+(ks!=k+1 ? Math.abs(e[ks-1]) : 0.0); if(Math.abs(arrayS[ks])<=eps*t) { arrayS[ks]=0.0; break; } } if(ks==k) { action=3; } else if(ks==p-1) { action=1; } else { action=2; k=ks; } } k++; switch(action) { // deflate negligible arrayS[p] case 1: { double f=e[p-2]; e[p-2]=0.0; for(int j=p-2;j>=k;j--) { double t=ExtraMath.hypot(arrayS[j],f); final double cs=arrayS[j]/t; final double sn=f/t; arrayS[j]=t; if(j!=k) { f=-sn*e[j-1]; e[j-1]*=cs; } for(int i=0;i=arrayS[k+1]) break; double tmp=arrayS[k]; arrayS[k]=arrayS[k+1]; arrayS[k+1]=tmp; if(k





© 2015 - 2024 Weber Informatics LLC | Privacy Policy