JSci.maths.wavelet.haar.MultiSplineHaar Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jsci Show documentation
Show all versions of jsci Show documentation
JSci is a set of open source Java packages. The aim is to encapsulate scientific methods/principles in the most natural way possible. As such they should greatly aid the development of scientific based software.
It offers: abstract math interfaces, linear algebra (support for various matrix and vector types), statistics (including probability distributions), wavelets, newtonian mechanics, chart/graph components (AWT and Swing), MathML DOM implementation, ...
Note: some packages, like javax.comm, for the astro and instruments package aren't listed as dependencies (not available).
The newest version!
package JSci.maths.wavelet.haar;
import JSci.maths.*;
import JSci.maths.wavelet.splines.*;
import JSci.maths.wavelet.*;
/****************************************
* Haar Wavelets
* @author Daniel Lemire
*****************************************/
public final class MultiSplineHaar extends Multiresolution implements Filter, NumericalConstants {
protected final static int filtretype=0;
public MultiSplineHaar() {}
/****************************************
* This method is used to compute
* how the number of scaling functions
* changes from on scale to the other.
* Basically, if you have k scaling
* function and a Filter of type t, you'll
* have 2*k+t scaling functions at the
* next scale (dyadic case).
* Notice that this method assumes
* that one is working with the dyadic
* grid while the method "previousDimension"
* define in the interface "Filter" doesn't.
******************************************/
public int getFilterType () {
return(filtretype);
}
public MultiscaleFunction primaryScaling(int n0, int k) {
return(scaling(n0,k));
}
public MultiscaleFunction dualScaling(int n0, int k) {
return(scaling(n0,k));
}
public MultiscaleFunction primaryWavelet(int n0, int k) {
return(wavelet(n0,k));
}
public MultiscaleFunction dualWavelet(int n0, int k) {
return(wavelet(n0,k));
}
static final double[] vg={1d,1d};
static final double[] vog={1.0/SQRT2,-1.0/SQRT2};
/****************************************
* This method return the number of "scaling"
* functions at the previous scale given a
* number of scaling functions. The answer
* is always smaller than the provided value
* (about half since this is a dyadic
* implementation). This relates to the same idea
* as the "Filter type". It is used by
* the interface "Filter".
*****************************************/
public int previousDimension(int k) {
int i=(int) Math.round(k/2d);
if(2*i==k) {
return(i);
} else {
throw new IllegalScalingException("Odd number of values into an even Filter. Please change the number of values.");
}
}
/***************************************************
****************************************************/
public double[] lowpass (double[] v, double[] param) {
return(lowpass(v));
}
/****************************************
* This is the implementation of the highpass
* Filter. It is used by the interface
* "Filter". Highpass filters are normalized
* in order to get L2 orthonormality of the
* resulting wavelets (when it applies).
* See the class DiscreteHilbertSpace for
* an implementation of the L2 integration.
*****************************************/
public double[] highpass (double[] v, double[] param) {
return(highpass(v));
}
/**************************************
***************************************/
public double[] lowpass(double[] gete) {
if(gete.length<1) {
throw new IllegalArgumentException("The array is not long enough : "+gete.length+" < 1");
}
double[] sortie=new double[2*gete.length];
for(int k=0;k=n0)) {
throw new IllegalArgumentException("Incorrect parameters : "+n0+", "+k);
}
double[] v=new double[n0];
v[k]=1;
return(new PiecewiseConstant(v));
}
/*************************************
**************************************/
public static PiecewiseConstant wavelet(int n0, int k) {
if((k<0)||(n0<0)||(k>=n0)) {
throw new IllegalArgumentException("Incorrect parameters : "+n0+", "+k);
}
double[] v=new double[2*n0];
v[2*k]=vog[0];
v[2*k+1]=vog[1];
return(new PiecewiseConstant(v));
}
}