JSci.physics.quantum.Operator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jsci Show documentation
Show all versions of jsci Show documentation
JSci is a set of open source Java packages. The aim is to encapsulate scientific methods/principles in the most natural way possible. As such they should greatly aid the development of scientific based software.
It offers: abstract math interfaces, linear algebra (support for various matrix and vector types), statistics (including probability distributions), wavelets, newtonian mechanics, chart/graph components (AWT and Swing), MathML DOM implementation, ...
Note: some packages, like javax.comm, for the astro and instruments package aren't listed as dependencies (not available).
The newest version!
package JSci.physics.quantum;
import JSci.maths.Complex;
import JSci.maths.Member;
import JSci.maths.DimensionException;
import JSci.maths.MaximumIterationsExceededException;
import JSci.maths.matrices.AbstractComplexSquareMatrix;
import JSci.maths.vectors.AbstractComplexVector;
import JSci.maths.vectors.ComplexVector;
/**
* The Operator class provides an object for encapsulating quantum mechanical operators.
* @version 1.5
* @author Mark Hale
*/
public class Operator implements Member {
protected AbstractComplexSquareMatrix representation;
/**
* Constructs an operator given a matrix representation.
* @param rep a matrix representation
*/
public Operator(AbstractComplexSquareMatrix rep) {
representation=rep;
}
/**
* Compares two operators for equality.
* @param a an operator
*/
public boolean equals(Object a) {
return representation.equals(((Operator)a).representation);
}
/**
* Returns a string representing this operator.
*/
public String toString() {
return representation.toString();
}
/**
* Returns a hashcode for this operator.
*/
public int hashCode() {
return (int)Math.exp(trace().mod());
}
/**
* Returns the representation.
*/
public AbstractComplexSquareMatrix getRepresentation() {
return representation;
}
/**
* Returns true if this operator is self-adjoint.
*/
public boolean isSelfAdjoint() {
return representation.isHermitian();
}
/**
* Returns true if this operator is unitary.
*/
public boolean isUnitary() {
return representation.isUnitary();
}
/**
* Returns the trace.
*/
public Complex trace() {
return representation.trace();
}
/**
* Returns the operator norm.
*/
public double norm() {
try {
return representation.operatorNorm();
} catch(MaximumIterationsExceededException e) {
return -1.0;
}
}
/**
* Returns the dimension.
*/
public int dimension() {
return representation.columns();
}
public Object getSet() {
return representation.getSet();
}
//============
// OPERATIONS
//============
// ADDITION
/**
* Returns the addition of this operator and another.
* @param op an operator
* @exception MatrixDimensionException If the operators have different dimensions.
*/
public Operator add(Operator op) {
return new Operator(representation.add(op.representation));
}
// SUBTRACTION
/**
* Returns the subtraction of this operator and another.
* @param op an operator
* @exception MatrixDimensionException If the operators have different dimensions.
*/
public Operator subtract(Operator op) {
return new Operator(representation.subtract(op.representation));
}
// MULTIPLICATION
/**
* Returns the multiplication of this operator and another.
* @param op an operator
* @exception MatrixDimensionException If the operators have different dimensions.
*/
public Operator multiply(Operator op) {
return new Operator(representation.multiply(op.representation));
}
/**
* Returns the multiplication of this operator and a ket vector.
* @param ket a ket vector
* @exception DimensionException If the operator and vector have different dimensions.
*/
public KetVector multiply(KetVector ket) {
int opDim=dimension();
if(opDim==ket.dimension()) {
AbstractComplexVector ketRep=ket.getRepresentation();
Complex tmp,array[]=new Complex[opDim];
for(int j,i=0;i