All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.com.ibm.as400.access.AS400ZonedDecimal Maven / Gradle / Ivy

The newest version!
///////////////////////////////////////////////////////////////////////////////
//
// JTOpen (IBM Toolbox for Java - OSS version)
//
// Filename:  AS400ZonedDecimal.java
//
// The source code contained herein is licensed under the IBM Public License
// Version 1.0, which has been approved by the Open Source Initiative.
// Copyright (C) 1997-2004 International Business Machines Corporation and
// others.  All rights reserved.
//
///////////////////////////////////////////////////////////////////////////////

package com.ibm.as400.access;

import java.math.BigDecimal;
import java.math.BigInteger;

/**
 *  The AS400ZonedDecimal class provides a converter between a BigDecimal object and a zoned decimal format floating point number.
 **/
public class AS400ZonedDecimal implements AS400DataType
{
    static final long serialVersionUID = 4L;

    private int digits;
    private int scale;
    private static final long defaultValue = 0;
    private static final boolean HIGH_NIBBLE = AS400PackedDecimal.HIGH_NIBBLE;
    private static final boolean LOW_NIBBLE  = AS400PackedDecimal.LOW_NIBBLE;

    private boolean useDouble_ = false;

    /**
     * Constructs an AS400ZonedDecimal object.
     * @param numDigits The number of digits in the zoned decimal number. It must be greater than or equal to one and less than or equal to thirty-one.
     * @param numDecimalPositions The number of decimal positions in the zoned decimal number. It must be greater than or equal to zero and less than or equal to numDigits.
     */
    public AS400ZonedDecimal(int numDigits, int numDecimalPositions)
    {
     // check for valid input
     if (numDigits < 1 || numDigits > 63) // @M0C - changed the upper limit here from 31 for JDBC support
     {
         throw new ExtendedIllegalArgumentException("numDigits (" + String.valueOf(numDigits) + ")", ExtendedIllegalArgumentException.RANGE_NOT_VALID);
     }
     if (numDecimalPositions < 0 || numDecimalPositions > numDigits)
     {
         throw new ExtendedIllegalArgumentException("numDecimalPositions (" + String.valueOf(numDecimalPositions) + ")", ExtendedIllegalArgumentException.RANGE_NOT_VALID);
     }

     // set instance variables
     this.digits = numDigits;
     this.scale = numDecimalPositions;
    }

    /**
     * Creates a new AS400ZonedDecimal object that is identical to the current instance.
     * @return The new object.
     **/
    public Object clone()
    {
     try
     {
         return super.clone();  // Object.clone does not throw exception
     }
     catch (CloneNotSupportedException e)
     {
         Trace.log(Trace.ERROR, "Unexpected cloning error", e);
         throw new InternalErrorException(InternalErrorException.UNKNOWN,e);
     }
    }

    /**
     * Returns the byte length of the data type.
     * @return The number of bytes in the IBM i representation of the data type.
     **/
    public int getByteLength()
    {
     return this.digits;
    }

    /**
     * Returns a Java object representing the default value of the data type.
     * @return The BigDecimal object with a value of zero.
     **/
    public Object getDefaultValue()
    {
     return BigDecimal.valueOf(defaultValue);
    }

    /**
     * Returns {@link com.ibm.as400.access.AS400DataType#TYPE_ZONED TYPE_ZONED}.
     * @return AS400DataType.TYPE_ZONED.
    **/
    public int getInstanceType()
    {
      return AS400DataType.TYPE_ZONED;
    }

    /**
     * Returns the Java class that corresponds with this data type.
     * @return BigDecimal.class.
     **/
    public Class getJavaType()
    {
      return BigDecimal.class;
    }

    /**
     * Returns the total number of digits in the zoned decimal number.
     * @return The number of digits.
     **/
    public int getNumberOfDigits()
    {
     return this.digits;
    }

    /**
     * Returns the number of decimal positions in the zoned decimal number.
     * @return The number of decimal positions.
     **/
    public int getNumberOfDecimalPositions()
    {
     return this.scale;
    }

    /**
     * Indicates if a {@link java.lang.Double Double} object or a
     * {@link java.math.BigDecimal BigDecimal} object will be returned
     * on a call to {@link #toObject toObject()}.
     * @return true if a Double will be returned, false if a BigDecimal
     * will be returned.  The default is false.
    **/
    public boolean isUseDouble()
    {
      return useDouble_;
    }

    /**
     * Sets whether to return a {@link java.lang.Double Double} object or a
     * {@link java.math.BigDecimal BigDecimal} object on a call to
     * {@link #toObject toObject()}.
     * @param b 
     * @see com.ibm.as400.access.AS400PackedDecimal#setUseDouble
    **/
    public void setUseDouble(boolean b)
    {
      useDouble_ = b;
    }

    /**
     * Converts the specified Java object to IBM i format.
     * @param javaValue The object corresponding to the data type.  It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
     * @return The IBM i representation of the data type.
     **/
    public byte[] toBytes(Object javaValue)
    {
     byte[] as400Value = new byte[this.digits];
     this.toBytes(javaValue, as400Value, 0);
     return as400Value;
    }

    /**
     * Converts the specified Java object into IBM i format in the specified byte array.
     * @param javaValue The object corresponding to the data type.  It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
     * @param as400Value The array to receive the data type in IBM i format.  There must be enough space to hold the IBM i value.
     * @return The number of bytes in the IBM i representation of the data type.
     **/
    public int toBytes(Object javaValue, byte[] as400Value)
    {
     return this.toBytes(javaValue, as400Value, 0);
    }

    /**
     * Converts the specified Java object into IBM i format in the specified byte array.
     * @param javaValue The object corresponding to the data type. It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
     * @param as400Value The array to receive the data type in IBM i format.  There must be enough space to hold the IBM i value.
     * @param offset The offset into the byte array for the start of the IBM i value. It must be greater than or equal to zero.
     * @return The number of bytes in the IBM i representation of the data type.
     **/
    public int toBytes(Object javaValue, byte[] as400Value, int offset)
    {
     int outDigits = this.digits;
     int outDecimalPlaces = this.scale;

     // verify input
     BigDecimal inValue = (BigDecimal)javaValue; // Let this line throw ClassCastException
     if (inValue.scale() > outDecimalPlaces)  // Let this line throw NullPointerException
     {
         throw new ExtendedIllegalArgumentException("javaValue (" + javaValue.toString() + ")", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
     }

     // read the sign
     int sign = inValue.signum();

     // get just the digits from BigDecimal, "normalize" away sign, decimal place etc.
     char[] inChars = inValue.abs().movePointRight(outDecimalPlaces).toBigInteger().toString().toCharArray();

     // Check overall length
     int inLength = inChars.length;
     if (inLength > outDigits)
     {
         throw new ExtendedIllegalArgumentException("javaValue (" + javaValue.toString() + ")", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
     }

     int inPosition = 0; // position in char[]

     // write correct number of leading zero's
     for (int i=0; i Long.MAX_VALUE)
            throw new ExtendedIllegalArgumentException("doubleValue", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);

        // Extract the normalized value.  This is the value represented by
        // two longs (one for each side of the decimal point).  Using longs
        // here improves the quality of the algorithm as well as the
        // performance of arithmetic operations.  We may need to use an
        // "effective" scale due to the lack of precision representable
        // by a long.
        long leftSide = (long)absValue;
        int effectiveScale = (scale > 15) ? 15 : scale;
        long rightSide = (long)Math.round((absValue - (double)leftSide) * Math.pow(10, effectiveScale));

        // Ok, now we are done with any double arithmetic!

        // If the effective scale is different than the actual scale,
        // then pad with zeros.
        int rightmostOffset = offset + digits - 1;
        int padOffset = rightmostOffset - (scale - effectiveScale);
        for (int i = rightmostOffset; i > padOffset; --i)
            as400Value[i] = (byte)0x00F0;

        // Compute the bytes for the right side of the decimal point.
        int decimalOffset = rightmostOffset - scale;
        int nextDigit;
        for (int i = padOffset; i > decimalOffset; --i) {
            nextDigit = (int)(rightSide % 10);
            as400Value[i] = (byte)(0x00F0 | nextDigit);
            rightSide /= 10;
        }

        // Compute the bytes for the left side of the decimal point.
        for (int i = decimalOffset; i >= offset; --i) {
            nextDigit = (int)(leftSide % 10);
            as400Value[i] = (byte)(0x00F0 | nextDigit);
            leftSide /= 10;
        }

        // Fix the sign, if negative.
        if (doubleValue < 0)
            as400Value[rightmostOffset] = (byte)(as400Value[rightmostOffset] & 0x00DF);

        // If left side still has digits, then the value was too big
        // to fit.
        if (leftSide > 0)
            throw new ExtendedIllegalArgumentException("doubleValue", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);

        return digits;
    }

    // @E0A
    /**
     * Converts the specified IBM i data type to a Java double value.  If the
     * decimal part of the value needs to be truncated to be represented by a
     * Java double value, then it is rounded towards zero.  If the integral
     * part of the value needs to be truncated to be represented by a Java
     * double value, then it converted to either Double.POSITIVE_INFINITY
     * or Double.NEGATIVE_INFINITY.
     *
     * @param as400Value The array containing the data type in IBM i format.
     *                   The entire data type must be represented.
     * @return           The Java double value corresponding to the data type.
     **/
    public double toDouble(byte[] as400Value)
    {
        return toDouble(as400Value, 0);
    }

    // @E0A
    /**
     * Converts the specified IBM i data type to a Java double value.  If the
     * decimal part of the value needs to be truncated to be represented by a
     * Java double value, then it is rounded towards zero.  If the integral
     * part of the value needs to be truncated to be represented by a Java
     * double value, then it converted to either Double.POSITIVE_INFINITY
     * or Double.NEGATIVE_INFINITY.
     *
     * @param as400Value The array containing the data type in IBM i format.
     *                   The entire data type must be represented.
     * @param offset     The offset into the byte array for the start of the IBM i value.
     *                   It must be greater than or equal to zero.
     * @return           The Java double value corresponding to the data type.
     **/
    public double toDouble(byte[] as400Value, int offset)
    {
        // Check the offset to prevent bogus NumberFormatException message.
        if (offset < 0)
            throw new ArrayIndexOutOfBoundsException(String.valueOf(offset));

        // Compute the value.
        /*
         * This old code had a bug in that it can produce
         * inexact answers. For example
         * 10.10105 is turned into -10.101049999999999

        double doubleValue = 0;
        double multiplier = Math.pow(10, digits - scale - 1);
        int rightMostOffset = offset + digits - 1;
        for(int i = offset; i <= rightMostOffset; ++i) {
            doubleValue += ((byte)(as400Value[i] & 0x000F)) * multiplier;
            multiplier /= 10;
        }
        */

        /*
         * Instead we gather the digits using a long, then divide by the scale.
         * Note:  Using a multiply by Math.pow(10, -scale) gives a worse answer.
         * Math.pow(10,-scale) is a less accurate number than Math.pow(10,scale)
         */

        int rightMostOffset = offset + digits - 1;
        double doubleValue = 0;
        
        if(digits < 19){
        	long   longValue = 0;
            double divisor = Math.pow(10, scale);
            for(int i = offset; i <= rightMostOffset; ++i) {
                longValue = longValue * 10 + (byte)(as400Value[i] & 0x000F);
            }
            doubleValue = longValue / divisor;
        } else {
            double divisor = Math.pow(10, scale);
            for(int i = offset; i <= rightMostOffset; ++i) {
            	doubleValue = doubleValue * 10 + (byte)(as400Value[i] & 0x000F);
            }
            doubleValue = doubleValue / divisor;
        }

        // Determine the sign.
        switch(as400Value[rightMostOffset] & 0x00F0) {
            case 0x00B0:
            case 0x00D0:
                // Negative.
                doubleValue *= -1;
                break;
            case 0x00A0:
            case 0x00C0:
            case 0x00E0:
            case 0x00F0:
                // Positive.
                break;
            default:
                throwNumberFormatException(HIGH_NIBBLE, rightMostOffset,
                                           as400Value[rightMostOffset] & 0x00FF,
                                           as400Value);
        }

        return doubleValue;
    }

    /**
     * Converts the specified IBM i data type to a Java object.
     * @param as400Value The array containing the data type in IBM i format.  The entire data type must be represented.
     * @return The BigDecimal object corresponding to the data type.
     **/
    public Object toObject(byte[] as400Value)
    {
     return this.toObject(as400Value, 0);
    }

    /**
     * Converts the specified IBM i data type to a Java object.
     * @param as400Value The array containing the data type in IBM i format.  The entire data type must be represented.
     * @param offset The offset into the byte array for the start of the IBM i value.  It must be greater than or equal to zero.
     * @return The BigDecimal object corresponding to the data type.
     **/
    public Object toObject(byte[] as400Value, int offset)
    {
      if (useDouble_) return new Double(toDouble(as400Value, offset));

     // Check offset to prevent bogus NumberFormatException message
     if (offset < 0)
     {
         throw new ArrayIndexOutOfBoundsException(String.valueOf(offset));
     }

     int size = this.digits;

     int outputPosition = 0; // position in char[]
     int digitsPlaced = 0; // number of digits moved from input to output

     char[] outputData = null;
     // read the sign bit, allow ArrayIndexException to be thrown
     int nibble = (as400Value[offset+size-1] & 0xFF) >>> 4;
     switch (nibble)
     {
         case 0x000B: // valid negative sign bits
         case 0x000D:
          outputData = new char[size+1];
          outputData[outputPosition++] = '-';
          break;
         case 0x000A: // valid positive sign bits
         case 0x000C:
         case 0x000E:
         case 0x000F:
          outputData = new char[size];
          break;
         default: // others invalid
         {
          throwNumberFormatException(HIGH_NIBBLE, offset+size-1,
                                     as400Value[offset+size-1] & 0xFF,
                                     as400Value);
          return null;   // return  
         }
     }

     // place the digits
     while (outputPosition < outputData.length)
     {
         nibble = as400Value[offset++] & 0x000F;
         if (nibble > 0x0009) {
           if (Trace.traceOn_) Trace.log(Trace.ERROR, 
               " outputPosition="+outputPosition+
               " outputData.length="+outputData.length +
               " offset (after increment)= "+offset);

           throwNumberFormatException(LOW_NIBBLE, offset-1,
                                      as400Value[offset-1] & 0x00FF,
                                      as400Value);
         }
         outputData[outputPosition++] = (char)(nibble | 0x0030);
     }

     // construct New BigDecimal object
     return new BigDecimal(new BigInteger(new String(outputData)), this.scale);
    }

    static final void throwNumberFormatException(boolean highNibble, int byteOffset, int byteValue, byte[] fieldBytes) throws NumberFormatException
    {
      String text;
      if (highNibble) {
        text = ResourceBundleLoader.getText("EXC_HIGH_NIBBLE_NOT_VALID", Integer.toString(byteOffset), byteToString(byteValue));
      }
      else {
        text = ResourceBundleLoader.getText("EXC_LOW_NIBBLE_NOT_VALID", Integer.toString(byteOffset), byteToString(byteValue));
      }
      if (Trace.traceOn_) Trace.log(Trace.ERROR, "Byte sequence is not valid for a field of type 'zoned decimal':", fieldBytes);
      NumberFormatException nfe =  new NumberFormatException(text);
      if (Trace.traceOn_) Trace.log(Trace.ERROR, nfe); 
      throw nfe;
    }

    private static final String byteToString(int byteVal)
    {
      int leftDigitValue = (byteVal >>> 4) & 0x0F;
      int rightDigitValue = byteVal & 0x0F;
      char[] digitChars = new char[2];
      // 0x30 = '0', 0x41 = 'A'
      digitChars[0] = leftDigitValue < 0x0A ? (char)(0x30 + leftDigitValue) : (char)(leftDigitValue - 0x0A + 0x41);
      digitChars[1] = rightDigitValue < 0x0A ? (char)(0x30 + rightDigitValue) : (char)(rightDigitValue - 0x0A + 0x41);
      return new String(digitChars);
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy