com.ibm.as400.access.AS400ZonedDecimal Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jt400 Show documentation
Show all versions of jt400 Show documentation
The Open Source version of the IBM Toolbox for Java
///////////////////////////////////////////////////////////////////////////////
//
// JTOpen (IBM Toolbox for Java - OSS version)
//
// Filename: AS400ZonedDecimal.java
//
// The source code contained herein is licensed under the IBM Public License
// Version 1.0, which has been approved by the Open Source Initiative.
// Copyright (C) 1997-2004 International Business Machines Corporation and
// others. All rights reserved.
//
///////////////////////////////////////////////////////////////////////////////
package com.ibm.as400.access;
import java.math.BigDecimal;
import java.math.BigInteger;
/**
* The AS400ZonedDecimal class provides a converter between a BigDecimal object and a zoned decimal format floating point number.
**/
public class AS400ZonedDecimal implements AS400DataType
{
static final long serialVersionUID = 4L;
private int digits;
private int scale;
private static final long defaultValue = 0;
private static final boolean HIGH_NIBBLE = AS400PackedDecimal.HIGH_NIBBLE;
private static final boolean LOW_NIBBLE = AS400PackedDecimal.LOW_NIBBLE;
private boolean useDouble_ = false;
/**
* Constructs an AS400ZonedDecimal object.
* @param numDigits The number of digits in the zoned decimal number. It must be greater than or equal to one and less than or equal to thirty-one.
* @param numDecimalPositions The number of decimal positions in the zoned decimal number. It must be greater than or equal to zero and less than or equal to numDigits.
*/
public AS400ZonedDecimal(int numDigits, int numDecimalPositions)
{
// check for valid input
if (numDigits < 1 || numDigits > 63) // @M0C - changed the upper limit here from 31 for JDBC support
{
throw new ExtendedIllegalArgumentException("numDigits (" + String.valueOf(numDigits) + ")", ExtendedIllegalArgumentException.RANGE_NOT_VALID);
}
if (numDecimalPositions < 0 || numDecimalPositions > numDigits)
{
throw new ExtendedIllegalArgumentException("numDecimalPositions (" + String.valueOf(numDecimalPositions) + ")", ExtendedIllegalArgumentException.RANGE_NOT_VALID);
}
// set instance variables
this.digits = numDigits;
this.scale = numDecimalPositions;
}
/**
* Creates a new AS400ZonedDecimal object that is identical to the current instance.
* @return The new object.
**/
public Object clone()
{
try
{
return super.clone(); // Object.clone does not throw exception
}
catch (CloneNotSupportedException e)
{
Trace.log(Trace.ERROR, "Unexpected cloning error", e);
throw new InternalErrorException(InternalErrorException.UNKNOWN,e);
}
}
/**
* Returns the byte length of the data type.
* @return The number of bytes in the IBM i representation of the data type.
**/
public int getByteLength()
{
return this.digits;
}
/**
* Returns a Java object representing the default value of the data type.
* @return The BigDecimal object with a value of zero.
**/
public Object getDefaultValue()
{
return BigDecimal.valueOf(defaultValue);
}
/**
* Returns {@link com.ibm.as400.access.AS400DataType#TYPE_ZONED TYPE_ZONED}.
* @return AS400DataType.TYPE_ZONED.
**/
public int getInstanceType()
{
return AS400DataType.TYPE_ZONED;
}
/**
* Returns the Java class that corresponds with this data type.
* @return BigDecimal.class.
**/
public Class getJavaType()
{
return BigDecimal.class;
}
/**
* Returns the total number of digits in the zoned decimal number.
* @return The number of digits.
**/
public int getNumberOfDigits()
{
return this.digits;
}
/**
* Returns the number of decimal positions in the zoned decimal number.
* @return The number of decimal positions.
**/
public int getNumberOfDecimalPositions()
{
return this.scale;
}
/**
* Indicates if a {@link java.lang.Double Double} object or a
* {@link java.math.BigDecimal BigDecimal} object will be returned
* on a call to {@link #toObject toObject()}.
* @return true if a Double will be returned, false if a BigDecimal
* will be returned. The default is false.
**/
public boolean isUseDouble()
{
return useDouble_;
}
/**
* Sets whether to return a {@link java.lang.Double Double} object or a
* {@link java.math.BigDecimal BigDecimal} object on a call to
* {@link #toObject toObject()}.
* @param b
* @see com.ibm.as400.access.AS400PackedDecimal#setUseDouble
**/
public void setUseDouble(boolean b)
{
useDouble_ = b;
}
/**
* Converts the specified Java object to IBM i format.
* @param javaValue The object corresponding to the data type. It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
* @return The IBM i representation of the data type.
**/
public byte[] toBytes(Object javaValue)
{
byte[] as400Value = new byte[this.digits];
this.toBytes(javaValue, as400Value, 0);
return as400Value;
}
/**
* Converts the specified Java object into IBM i format in the specified byte array.
* @param javaValue The object corresponding to the data type. It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
* @param as400Value The array to receive the data type in IBM i format. There must be enough space to hold the IBM i value.
* @return The number of bytes in the IBM i representation of the data type.
**/
public int toBytes(Object javaValue, byte[] as400Value)
{
return this.toBytes(javaValue, as400Value, 0);
}
/**
* Converts the specified Java object into IBM i format in the specified byte array.
* @param javaValue The object corresponding to the data type. It must be an instance of BigDecimal and the BigDecimal must have a less than or equal to number of digits and a less than or equal to number of decimal places.
* @param as400Value The array to receive the data type in IBM i format. There must be enough space to hold the IBM i value.
* @param offset The offset into the byte array for the start of the IBM i value. It must be greater than or equal to zero.
* @return The number of bytes in the IBM i representation of the data type.
**/
public int toBytes(Object javaValue, byte[] as400Value, int offset)
{
int outDigits = this.digits;
int outDecimalPlaces = this.scale;
// verify input
BigDecimal inValue = (BigDecimal)javaValue; // Let this line throw ClassCastException
if (inValue.scale() > outDecimalPlaces) // Let this line throw NullPointerException
{
throw new ExtendedIllegalArgumentException("javaValue (" + javaValue.toString() + ")", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
}
// read the sign
int sign = inValue.signum();
// get just the digits from BigDecimal, "normalize" away sign, decimal place etc.
char[] inChars = inValue.abs().movePointRight(outDecimalPlaces).toBigInteger().toString().toCharArray();
// Check overall length
int inLength = inChars.length;
if (inLength > outDigits)
{
throw new ExtendedIllegalArgumentException("javaValue (" + javaValue.toString() + ")", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
}
int inPosition = 0; // position in char[]
// write correct number of leading zero's
for (int i=0; i Long.MAX_VALUE)
throw new ExtendedIllegalArgumentException("doubleValue", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
// Extract the normalized value. This is the value represented by
// two longs (one for each side of the decimal point). Using longs
// here improves the quality of the algorithm as well as the
// performance of arithmetic operations. We may need to use an
// "effective" scale due to the lack of precision representable
// by a long.
long leftSide = (long)absValue;
int effectiveScale = (scale > 15) ? 15 : scale;
long rightSide = (long)Math.round((absValue - (double)leftSide) * Math.pow(10, effectiveScale));
// Ok, now we are done with any double arithmetic!
// If the effective scale is different than the actual scale,
// then pad with zeros.
int rightmostOffset = offset + digits - 1;
int padOffset = rightmostOffset - (scale - effectiveScale);
for (int i = rightmostOffset; i > padOffset; --i)
as400Value[i] = (byte)0x00F0;
// Compute the bytes for the right side of the decimal point.
int decimalOffset = rightmostOffset - scale;
int nextDigit;
for (int i = padOffset; i > decimalOffset; --i) {
nextDigit = (int)(rightSide % 10);
as400Value[i] = (byte)(0x00F0 | nextDigit);
rightSide /= 10;
}
// Compute the bytes for the left side of the decimal point.
for (int i = decimalOffset; i >= offset; --i) {
nextDigit = (int)(leftSide % 10);
as400Value[i] = (byte)(0x00F0 | nextDigit);
leftSide /= 10;
}
// Fix the sign, if negative.
if (doubleValue < 0)
as400Value[rightmostOffset] = (byte)(as400Value[rightmostOffset] & 0x00DF);
// If left side still has digits, then the value was too big
// to fit.
if (leftSide > 0)
throw new ExtendedIllegalArgumentException("doubleValue", ExtendedIllegalArgumentException.LENGTH_NOT_VALID);
return digits;
}
// @E0A
/**
* Converts the specified IBM i data type to a Java double value. If the
* decimal part of the value needs to be truncated to be represented by a
* Java double value, then it is rounded towards zero. If the integral
* part of the value needs to be truncated to be represented by a Java
* double value, then it converted to either Double.POSITIVE_INFINITY
* or Double.NEGATIVE_INFINITY.
*
* @param as400Value The array containing the data type in IBM i format.
* The entire data type must be represented.
* @return The Java double value corresponding to the data type.
**/
public double toDouble(byte[] as400Value)
{
return toDouble(as400Value, 0);
}
// @E0A
/**
* Converts the specified IBM i data type to a Java double value. If the
* decimal part of the value needs to be truncated to be represented by a
* Java double value, then it is rounded towards zero. If the integral
* part of the value needs to be truncated to be represented by a Java
* double value, then it converted to either Double.POSITIVE_INFINITY
* or Double.NEGATIVE_INFINITY.
*
* @param as400Value The array containing the data type in IBM i format.
* The entire data type must be represented.
* @param offset The offset into the byte array for the start of the IBM i value.
* It must be greater than or equal to zero.
* @return The Java double value corresponding to the data type.
**/
public double toDouble(byte[] as400Value, int offset)
{
// Check the offset to prevent bogus NumberFormatException message.
if (offset < 0)
throw new ArrayIndexOutOfBoundsException(String.valueOf(offset));
// Compute the value.
/*
* This old code had a bug in that it can produce
* inexact answers. For example
* 10.10105 is turned into -10.101049999999999
double doubleValue = 0;
double multiplier = Math.pow(10, digits - scale - 1);
int rightMostOffset = offset + digits - 1;
for(int i = offset; i <= rightMostOffset; ++i) {
doubleValue += ((byte)(as400Value[i] & 0x000F)) * multiplier;
multiplier /= 10;
}
*/
/*
* Instead we gather the digits using a long, then divide by the scale.
* Note: Using a multiply by Math.pow(10, -scale) gives a worse answer.
* Math.pow(10,-scale) is a less accurate number than Math.pow(10,scale)
*/
int rightMostOffset = offset + digits - 1;
double doubleValue = 0;
if(digits < 19){
long longValue = 0;
double divisor = Math.pow(10, scale);
for(int i = offset; i <= rightMostOffset; ++i) {
longValue = longValue * 10 + (byte)(as400Value[i] & 0x000F);
}
doubleValue = longValue / divisor;
} else {
double divisor = Math.pow(10, scale);
for(int i = offset; i <= rightMostOffset; ++i) {
doubleValue = doubleValue * 10 + (byte)(as400Value[i] & 0x000F);
}
doubleValue = doubleValue / divisor;
}
// Determine the sign.
switch(as400Value[rightMostOffset] & 0x00F0) {
case 0x00B0:
case 0x00D0:
// Negative.
doubleValue *= -1;
break;
case 0x00A0:
case 0x00C0:
case 0x00E0:
case 0x00F0:
// Positive.
break;
default:
throwNumberFormatException(HIGH_NIBBLE, rightMostOffset,
as400Value[rightMostOffset] & 0x00FF,
as400Value);
}
return doubleValue;
}
/**
* Converts the specified IBM i data type to a Java object.
* @param as400Value The array containing the data type in IBM i format. The entire data type must be represented.
* @return The BigDecimal object corresponding to the data type.
**/
public Object toObject(byte[] as400Value)
{
return this.toObject(as400Value, 0);
}
/**
* Converts the specified IBM i data type to a Java object.
* @param as400Value The array containing the data type in IBM i format. The entire data type must be represented.
* @param offset The offset into the byte array for the start of the IBM i value. It must be greater than or equal to zero.
* @return The BigDecimal object corresponding to the data type.
**/
public Object toObject(byte[] as400Value, int offset)
{
if (useDouble_) return Double.valueOf(toDouble(as400Value, offset));
// Check offset to prevent bogus NumberFormatException message
if (offset < 0)
{
throw new ArrayIndexOutOfBoundsException(String.valueOf(offset));
}
int size = this.digits;
int outputPosition = 0; // position in char[]
int digitsPlaced = 0; // number of digits moved from input to output
char[] outputData = null;
// read the sign bit, allow ArrayIndexException to be thrown
int nibble = (as400Value[offset+size-1] & 0xFF) >>> 4;
switch (nibble)
{
case 0x000B: // valid negative sign bits
case 0x000D:
outputData = new char[size+1];
outputData[outputPosition++] = '-';
break;
case 0x000A: // valid positive sign bits
case 0x000C:
case 0x000E:
case 0x000F:
outputData = new char[size];
break;
default: // others invalid
{
throwNumberFormatException(HIGH_NIBBLE, offset+size-1,
as400Value[offset+size-1] & 0xFF,
as400Value);
return null; // return
}
}
// place the digits
while (outputPosition < outputData.length)
{
nibble = as400Value[offset++] & 0x000F;
if (nibble > 0x0009) {
if (Trace.traceOn_) Trace.log(Trace.ERROR,
" outputPosition="+outputPosition+
" outputData.length="+outputData.length +
" offset (after increment)= "+offset);
throwNumberFormatException(LOW_NIBBLE, offset-1,
as400Value[offset-1] & 0x00FF,
as400Value);
}
outputData[outputPosition++] = (char)(nibble | 0x0030);
}
// construct New BigDecimal object
return new BigDecimal(new BigInteger(new String(outputData)), this.scale);
}
static final void throwNumberFormatException(boolean highNibble, int byteOffset, int byteValue, byte[] fieldBytes) throws NumberFormatException
{
String text;
if (highNibble) {
text = ResourceBundleLoader.getText("EXC_HIGH_NIBBLE_NOT_VALID", Integer.toString(byteOffset), byteToString(byteValue));
}
else {
text = ResourceBundleLoader.getText("EXC_LOW_NIBBLE_NOT_VALID", Integer.toString(byteOffset), byteToString(byteValue));
}
if (Trace.traceOn_) Trace.log(Trace.ERROR, "Byte sequence is not valid for a field of type 'zoned decimal':", fieldBytes);
NumberFormatException nfe = new NumberFormatException(text);
if (Trace.traceOn_) Trace.log(Trace.ERROR, nfe);
throw nfe;
}
private static final String byteToString(int byteVal)
{
int leftDigitValue = (byteVal >>> 4) & 0x0F;
int rightDigitValue = byteVal & 0x0F;
char[] digitChars = new char[2];
// 0x30 = '0', 0x41 = 'A'
digitChars[0] = leftDigitValue < 0x0A ? (char)(0x30 + leftDigitValue) : (char)(leftDigitValue - 0x0A + 0x41);
digitChars[1] = rightDigitValue < 0x0A ? (char)(0x30 + rightDigitValue) : (char)(rightDigitValue - 0x0A + 0x41);
return new String(digitChars);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy