All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.uci.ics.jung.algorithms.util.WeightedChoice Maven / Gradle / Ivy

There is a newer version: 2.1.1
Show newest version
/**
 * Copyright (c) 2009, the JUNG Project and the Regents of the University 
 * of California
 * All rights reserved.
 *
 * This software is open-source under the BSD license; see either
 * "license.txt" or
 * http://jung.sourceforge.net/license.txt for a description.
 * Created on Jan 8, 2009
 * 
 */
package edu.uci.ics.jung.algorithms.util;

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Random;

/**
 * Selects items according to their probability in an arbitrary probability 
 * distribution.  The distribution is specified by a {@code Map} from
 * items (of type {@code T}) to weights of type {@code Number}, supplied
 * to the constructor; these weights are normalized internally to act as 
 * probabilities.
 * 
 * 

This implementation selects items in O(1) time, and requires O(n) space. * * @author Joshua O'Madadhain */ public class WeightedChoice { private List item_pairs; private Random random; /** * The default minimum value that is treated as a valid probability * (as opposed to rounding error from floating-point operations). */ public static final double DEFAULT_THRESHOLD = 0.00000000001; /** * Equivalent to {@code this(item_weights, new Random(), DEFAULT_THRESHOLD)}. * @param item_weights */ public WeightedChoice(Map item_weights) { this(item_weights, new Random(), DEFAULT_THRESHOLD); } /** * Equivalent to {@code this(item_weights, new Random(), threshold)}. */ public WeightedChoice(Map item_weights, double threshold) { this(item_weights, new Random(), threshold); } /** * Equivalent to {@code this(item_weights, random, DEFAULT_THRESHOLD)}. */ public WeightedChoice(Map item_weights, Random random) { this(item_weights, random, DEFAULT_THRESHOLD); } /** * Creates an instance with the specified mapping from items to weights, * random number generator, and threshold value. * *

The mapping defines the weight for each item to be selected; this * will be proportional to the probability of its selection. *

The random number generator specifies the mechanism which will be * used to provide uniform integer and double values. *

The threshold indicates default minimum value that is treated as a valid * probability (as opposed to rounding error from floating-point operations). */ public WeightedChoice(Map item_weights, Random random, double threshold) { if (item_weights.isEmpty()) throw new IllegalArgumentException("Item weights must be non-empty"); int item_count = item_weights.size(); item_pairs = new ArrayList(item_count); double sum = 0; for (Map.Entry entry : item_weights.entrySet()) { double value = entry.getValue().doubleValue(); if (value <= 0) throw new IllegalArgumentException("Weights must be > 0"); sum += value; } double bucket_weight = 1.0 / item_weights.size(); Queue light_weights = new LinkedList(); Queue heavy_weights = new LinkedList(); for (Map.Entry entry : item_weights.entrySet()) { double value = entry.getValue().doubleValue() / sum; enqueueItem(entry.getKey(), value, bucket_weight, light_weights, heavy_weights); } // repeat until both queues empty while (!heavy_weights.isEmpty() || !light_weights.isEmpty()) { ItemPair heavy_item = heavy_weights.poll(); ItemPair light_item = light_weights.poll(); double light_weight = 0; T light = null; T heavy = null; if (light_item != null) { light_weight = light_item.weight; light = light_item.light; } if (heavy_item != null) { heavy = heavy_item.heavy; // put the 'left over' weight from the heavy item--what wasn't // needed to make up the difference between the light weight and // 1/n--back in the appropriate queue double new_weight = heavy_item.weight - (bucket_weight - light_weight); if (new_weight > threshold) enqueueItem(heavy, new_weight, bucket_weight, light_weights, heavy_weights); } light_weight *= item_count; item_pairs.add(new ItemPair(light, heavy, light_weight)); } this.random = random; } /** * Adds key/value to the appropriate queue. Keys with values less than * the threshold get added to {@code light_weights}, all others get added * to {@code heavy_weights}. */ private void enqueueItem(T key, double value, double threshold, Queue light_weights, Queue heavy_weights) { if (value < threshold) light_weights.offer(new ItemPair(key, null, value)); else heavy_weights.offer(new ItemPair(null, key, value)); } /** * Sets the seed used by the internal random number generator. */ public void setRandomSeed(long seed) { this.random.setSeed(seed); } /** * Retrieves an item with probability proportional to its weight in the * {@code Map} provided in the input. */ public T nextItem() { ItemPair item_pair = item_pairs.get(random.nextInt(item_pairs.size())); if (random.nextDouble() < item_pair.weight) return item_pair.light; return item_pair.heavy; } /** * Manages light object/heavy object/light conditional probability tuples. */ private class ItemPair { T light; T heavy; double weight; private ItemPair(T light, T heavy, double weight) { this.light = light; this.heavy = heavy; this.weight = weight; } @Override public String toString() { return String.format("[L:%s, H:%s, %.3f]", light, heavy, weight); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy