![JAR search and dependency download from the Maven repository](/logo.png)
mulan.evaluation.MultipleEvaluation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mulan Show documentation
Show all versions of mulan Show documentation
Mulan is an open-source Java library for learning from multi-label datasets.
The newest version!
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* MultipleEvaluation.java
* Copyright (C) 2009-2012 Aristotle University of Thessaloniki, Greece
*/
package mulan.evaluation;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import mulan.data.MultiLabelInstances;
import mulan.evaluation.measure.MacroAverageMeasure;
import mulan.evaluation.measure.Measure;
/**
* Simple class that includes an array, whose elements are lists of evaluation
* evaluations. Used to compute means and standard deviations of multiple
* evaluations (e.g. cross-validation)
*
* @author Grigorios Tsoumakas
*/
public class MultipleEvaluation {
private MultiLabelInstances data;
private ArrayList evaluations;
private HashMap mean;
private HashMap standardDeviation;
private HashMap labelMean;
private HashMap labelStandardDeviation;
/**
* Constructs a new object
* @param data the evaluation data used for obtaining label names for per
* outputting per label values of macro average measures
*/
public MultipleEvaluation(MultiLabelInstances data) {
evaluations = new ArrayList();
this.data = data;
}
/**
* Constructs a new object with given array of evaluations
* @param data the evaluation data used for obtaining label names for per
* outputting per label values of macro average measures
* @param someEvaluations
*/
public MultipleEvaluation(Evaluation[] someEvaluations, MultiLabelInstances data) {
evaluations = new ArrayList();
evaluations.addAll(Arrays.asList(someEvaluations));
this.data = data;
}
/**
* Computes mean and standard deviation of all evaluation measures
*/
public void calculateStatistics() {
int size = evaluations.size();
HashMap sums = new HashMap();
HashMap labelSums = new HashMap();
// calculate sums of measures
for (int i = 0; i < evaluations.size(); i++) {
for (Measure m : evaluations.get(i).getMeasures()) {
double value = Double.NaN;
try {
value = m.getValue();
} catch (Exception ex) {
}
if (sums.containsKey(m.getName())) {
sums.put(m.getName(), sums.get(m.getName()) + value);
} else {
sums.put(m.getName(), value);
}
if (m instanceof MacroAverageMeasure) {
Double[] v = new Double[data.getNumLabels()];
for (int j=0; j();
for (String measureName : sums.keySet()) {
mean.put(measureName, sums.get(measureName) / size);
}
labelMean = new HashMap();
for (String measureName : labelSums.keySet()) {
Double[] v = labelSums.get(measureName);
for (int j=0; j();
labelSums = new HashMap();
for (int i = 0; i < evaluations.size(); i++) {
for (Measure m : evaluations.get(i).getMeasures()) {
double value = Double.NaN;
try {
value = m.getValue();
} catch (Exception ex) {
}
if (sums.containsKey(m.getName())) {
sums.put(m.getName(), sums.get(m.getName()) + Math.pow(value - mean.get(m.getName()), 2));
} else {
sums.put(m.getName(), Math.pow(value - mean.get(m.getName()), 2));
}
if (m instanceof MacroAverageMeasure) {
Double[] mean = labelMean.get(m.getName());
Double[] v = new Double[data.getNumLabels()];
for (int j=0; j();
for (String measureName : sums.keySet()) {
standardDeviation.put(measureName, Math.sqrt(sums.get(measureName) / size));
}
labelStandardDeviation = new HashMap();
for (String measureName : labelSums.keySet()) {
Double[] s = labelSums.get(measureName);
for (int j=0; j
© 2015 - 2025 Weber Informatics LLC | Privacy Policy