All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.saxon.ma.zeno.ZenoChain Maven / Gradle / Ivy

There is a newer version: 12.5
Show newest version
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2018-2022 Saxonica Limited
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

package net.sf.saxon.ma.zeno;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

/**
 * An implementation of sequences as a list-of-lists, where the sublists at the
 * end of the master list tend to be small, and the sublists at the start tend
 * to be larger (or the other way around if the list is built by prepending items
 * rather than appending them). The number of sublists is of the order log(N) where
 * N is the length of the sequence, giving logarithmic performance or better for
 * appending items to either end of the sequence, or for getting the Nth item.
 *
 * 

This is an immutable data structure; updating operations create a new * ZenoChain leaving the original unchanged.

* *

In effect the ZenoChain is a tree with a constant depth of 3, implemented as * a list of lists.

* *

For a list built by appending to the end, the size of sublists goes as * follows as the list grows: (1).. (32).. (32,1).. (32,32).. (64,1).. (64,32).. * (64,32,1).. (64,32,32).. (64,64,1).. (64,64,32).. (128,32,1).. (128,64,1).. * (128,64,32,1).. For a list of 20,000 items we get 10 sublists with sizes * (8192, 4096, 4096, 2048, 1024, 256, 128, 64, 64, 32). The exact numbers don't matter, * the important thing is that the number of sublists is log(N) with shorter * sublists at the end of the sequence where append/prepend operations take place.

* *

When two lists are concatenated, the two master lists are first concatenated, * followed by a consolidation to combine short lists now appearing near the middle * of the structure, to reduce the number of sublists.

* * @param the type of the items in the list */ public class ZenoChain implements Iterable { // The data structure is implemented as a list of lists private final ArrayList> masterList; /** * Create an empty sequence */ public ZenoChain() { masterList = new ArrayList<>(8); } /** * Private constructor to create a ZenoChain with a given master list * @param masterList the supplied master list */ private ZenoChain(ArrayList> masterList) { this.masterList = masterList; } /** * Append an item to this list. This is an immutable operation; the original list is unchanged * @param item the item to be appended * @return the list that results from the append operation */ public ZenoChain add(T item) { ArrayList> masterList2 = new ArrayList<>(masterList); // If the list is empty, create a new singleton list if (masterList2.isEmpty()) { ArrayList newSegment = new ArrayList<>(32); newSegment.add(item); masterList2.add(newSegment); return new ZenoChain<>(masterList2); } int threshold = 32; int index = masterList2.size() - 1; // Get the last segment ArrayList segment = masterList2.get(index); if (segment.size() < threshold) { // if the last segment is smaller than the threshold size, copy it, // add the item to the new copy, and change the master list to // refer to the new segment. ArrayList segment2 = new ArrayList<>(32); segment2.addAll(segment); segment2.add(item); masterList2.set(index, segment2); return new ZenoChain<>(masterList2); } else { // if the last segment has reached the threshold size, consider // combining it with the penultimate segment while (true) { index--; threshold *= 2; if (index < 0) { // we've reached the start of the list. No combining of segments // is possible, so just create a new final segment containing the new item alone ArrayList newFinalSegment = new ArrayList<>(); newFinalSegment.add(item); masterList2.add(newFinalSegment); return new ZenoChain<>(masterList2); } ArrayList priorSegment = masterList2.get(index); if (priorSegment.size() + segment.size() <= threshold) { // combine two adjacent segments into one ArrayList combinedSegment = new ArrayList<>(priorSegment.size() + segment.size()); combinedSegment.addAll(priorSegment); combinedSegment.addAll(segment); // add the combined segment to the master list, in place of the first of the pair masterList2.set(index, combinedSegment); // remove the second of the pair segment masterList2.remove(index+1); // create a new final segment containing the new item alone ArrayList newFinalSegment = new ArrayList<>(); newFinalSegment.add(item); // and add it to the master list masterList2.add(newFinalSegment); return new ZenoChain<>(masterList2); } // These two segments couldn't be combined because the total size was too large // so we now consider merging earlier segments. For example if the segment sizes // were (64, 64, 32) we will merge the first two to become (128, 32) segment = priorSegment; // continue looping } } } /** * Prepend an item. This is an immutable operation; the original list is unchanged. * @param item the item to be added at the start of the sequence * @return the list resulting from the prepend operation */ public ZenoChain prepend(T item) { ArrayList> masterList2 = new ArrayList<>(masterList); // If the list is empty, create a new singleton list if (masterList2.isEmpty()) { return add(item); } int threshold = 32; int index = 0; ArrayList segment = masterList2.get(index); // If the first segment is small enough, extend it by creating a copy // with one extra item at the start if (segment.size() < threshold) { ArrayList segment2 = new ArrayList<>(32); segment2.add(item); segment2.addAll(segment); masterList2.set(index, segment2); return new ZenoChain<>(masterList2); } else { // Starting with the first two segments, see if there are two adjacent segments that // can be concatenated into a single segment without exceeding a threshold size. The // threshold size increases the further you are from the start of the sequence, while (true) { index++; threshold *= 2; if (index >= masterList2.size()) { // We've got to the end without finding two segments to concatenate. // Simply add a new singleton segment at the start. ArrayList newInitialSegment = new ArrayList<>(); newInitialSegment.add(item); masterList2.add(0, newInitialSegment); return new ZenoChain<>(masterList2); } ArrayList nextSegment = masterList2.get(index); // Try joining this segment and the next segment if (nextSegment.size() + segment.size() <= threshold) { ArrayList combinedSegment = new ArrayList<>(); combinedSegment.addAll(segment); combinedSegment.addAll(nextSegment); masterList2.set(index, combinedSegment); masterList2.remove(index - 1); // Now add a new singleton segment at the start ArrayList newInitialSegment = new ArrayList<>(); newInitialSegment.add(item); masterList2.add(0, newInitialSegment); return new ZenoChain<>(masterList2); } // Continue looking for a pair of adjacent segments to combine segment = nextSegment; } } } /** * Append a sequence of items. This is an immutable operation; the original list is unchanged. * @param items the sequence of items to be appended * @return the concatenated sequence */ public ZenoChain addAll(Iterable items) { ZenoChain result = this; for (T item : items) { result = result.add(item); } return result; } /** * Concatenate two ZenoChains to form a new ZenoChain, leaving the original operands unchanged * @param other the ZenoChain to be concatenated after this one * @return a new ZenoChain whose elements are the elements of this ZenoChain followed by * the elements of the other ZenoChain. */ public ZenoChain concat(ZenoChain other) { ArrayList> newMaster = new ArrayList<>(masterList.size() + other.masterList.size()); newMaster.addAll(masterList); newMaster.addAll(other.masterList); return new ZenoChain(newMaster).reorganize(); } /** * Internal method to reduce fragmentation in a ZenoChain * @return a new ZenoChain with identical contents to the supplied ZenoChain, * but with better segmentation. */ private ZenoChain reorganize() { // Useful after concatenating multiple chains, to reduce the number of segments. // Starting from the right, if we find a segment that is smaller than both its // neighbours, merge it with its left-hand neighbour. for (int i=masterList.size()-2; i>=1; i--) { int priorSize = masterList.get(i-1).size(); int segSize = masterList.get(i).size(); int nextSize = masterList.get(i+1).size(); if (segSize <= priorSize && segSize <= nextSize) { ArrayList combinedSegment = new ArrayList<>(priorSize + segSize); combinedSegment.addAll(masterList.get(i-1)); combinedSegment.addAll(masterList.get(i)); masterList.set(i-1, combinedSegment); masterList.remove(i); } } return new ZenoChain(masterList); } /** * Get the item at position n, zero-based * @param n the requested index * @return the item at position n * @throws IndexOutOfBoundsException if n is negative or beyond the end of the list */ public T get(int n) { if (n < 0) { throw new IndexOutOfBoundsException("Index " + n + " is negative"); } int offset = 0; for (ArrayList segment : masterList) { if (offset + segment.size() > n) { return segment.get(n - offset); } offset += segment.size(); } throw new IndexOutOfBoundsException("Index " + n + " is too large"); } /** * Get a sublist of this list. *

Note that unlike {@link List#subList(int, int)}, the returned list is not "backed" by the * original list; changes to the returned list will not affect the original list in any way. * (This is inevitable, since both lists are immutable).

* @param start the zero-based start position of the required sublist, inclusive * @param end the zero-based end position of the required sublist, exclusive * @return the sublist, as a new ZenoChain * @throws IndexOutOfBoundsException under the same conditions as for {@link List#subList(int, int)}: * (start < 0 || end > size || start > end) */ public ZenoChain subList(int start, int end) { // The implementation approach is as follows. We always create a new master list. // Segments of the original list that are fully in the range of the sublist are // referenced from the new master list directly, without copying. Segments that // overlap the requested start and end points are partially "copied", as required, // using the Java {@List.sublist()} mechanism - which does not actually create a // copy. if (start < 0 || start > end) { throw new IndexOutOfBoundsException("start position for subList is out of range"); } ArrayList> newMaster = new ArrayList<>(); int offset = 0; int remainingLength = end - start; boolean active = false; // Process all the segments, with different treatment for (a) segments before the // start position, (b) segments overlapping the start position, (c) segments wholly // included in the sublist, (d) segments overlapping the end position, (e) segments // beyond the end position. for (ArrayList segment : masterList) { if (active) { if (remainingLength > segment.size()) { // Segment is wholly included remainingLength -= segment.size(); newMaster.add(segment); // No need to copy the segment, because it's immutable } else { // Segment spans the end position newMaster.add(new ArrayList(segment.subList(0, remainingLength))); return new ZenoChain(newMaster); } } else if (offset + segment.size() > start) { // segment spans the start position int localStart = start - offset; if (remainingLength > segment.size() - localStart) { // we copy this segment to the end if (start == 1 && segment.size() > 128) { // special case for tail() - break a long first segment to reduce the cost next time. // This assumes it's likely tail() will be called again on the sublist newMaster.add(new ArrayList(segment.subList(localStart, localStart + 64))); newMaster.add(new ArrayList(segment.subList(localStart + 64, segment.size()))); } else { newMaster.add(new ArrayList(segment.subList(localStart, segment.size()))); } remainingLength -= (segment.size() - localStart); active = true; } else { // segment spans both the start and end positions newMaster.add(new ArrayList(segment.subList(localStart, localStart + remainingLength))); return new ZenoChain(newMaster); } } else if (remainingLength == 0) { break; // do nothing; we're past the end position. } offset += segment.size(); } if (remainingLength > 0) { throw new IndexOutOfBoundsException("end position for subList is out of range"); } return new ZenoChain(newMaster); } /** * Get the size of the list * @return the size of the list */ public int size() { int total = 0; for (ArrayList segment : masterList) { total += segment.size(); } return total; } /** * Ask if the list is empty * @return true if the size is zero */ public boolean isEmpty() { return masterList.isEmpty() || (masterList.size()==1 && masterList.get(0).isEmpty()); } /** * Ask if the list is a singleton * * @return true if the size is one */ public boolean isSingleton() { return masterList.size() == 1 && masterList.get(0).size() == 1; } /** * Iterate over the items * @return a Java-style iterator over the items */ public Iterator iterator() { return new ZenoChainIterator(masterList); } /** * Get a string representation of the ZenoChain. * @return the string representation in the form (X,Y,Z,...) where X, * Y, and Z are the string representations of the elements of the sequence */ public String toString() { StringBuilder sb = new StringBuilder(); for (List segment : masterList) { sb.append("("); for (T item : segment) { sb.append(item).append(","); } sb.setCharAt(sb.length()-1, ')'); } return sb.toString(); } /** * Diagnostic display of a {@code ZenoChain}, exposing its internal structure * @return a string that shows the sizes of the segments, for example (64,32,4) for a * {@code ZenoChain} of length 100. */ public String showMetrics() { StringBuilder sb = new StringBuilder(); sb.append('('); for (List segment : masterList) { sb.append(segment.size()).append(","); } sb.setCharAt(sb.length()-1, ')'); return sb.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy