All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.saxon.value.FloatingPointConverter Maven / Gradle / Ivy

There is a newer version: 12.5
Show newest version
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2018-2023 Saxonica Limited
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

package net.sf.saxon.value;

import net.sf.saxon.str.UnicodeBuilder;
import net.sf.saxon.str.UnicodeString;

import java.math.BigInteger;

/**
 * This is a utility class that handles formatting of numbers as strings.
 * 

The algorithm for converting a floating point number to a string is taken from Guy L. Steele and * Jon L. White, How to Print Floating-Point Numbers Accurately, ACM SIGPLAN 1990. It is algorithm * (FPP)2 from that paper. There are three separate implementations of the algorithm:

*
    *
  • One using long arithmetic and generating non-exponential output representations
  • *
  • One using BigInteger arithmetic and generating non-exponential output representation
  • *
  • One using BigInteger arithmetic and generating exponential output representations
  • *
*

The choice of method depends on the value of the number being formatted.

*

The module contains some residual code (mainly the routine for formatting integers) from the class * AppenderHelper by Jack Shirazi in the O'Reilly book Java Performance Tuning. The floating point routines * in that module were found to be unsuitable, since they used floating point arithmetic which introduces * rounding errors.

*

There are several reasons for doing this conversion within Saxon, rather than leaving it all to Java. * Firstly, there are differences in the required output format, notably the absence of ".0" when formatting * whole numbers, and the different rules for the range of numbers where exponential notation is used. * Secondly, there are bugs in some Java implementations, for example JDK outputs 0.001 as 0.0010, and * IKVM/GNU gets things very wrong sometimes. Finally, this implementation is faster for "everyday" numbers, * though it is slower for more extreme numbers. It would probably be reasonable to hand over formatting * to the Java platform (at least when running the Sun JDK) for exponents outside the range -7 to +7.

*/ public class FloatingPointConverter { public static FloatingPointConverter THE_INSTANCE = new FloatingPointConverter(); private FloatingPointConverter() { } /** * char array holding the characters for the string "-Infinity". */ private static final String NEGATIVE_INFINITY = "-INF"; /** * char array holding the characters for the string "Infinity". */ private static final String POSITIVE_INFINITY = "INF"; /** * char array holding the characters for the string "NaN". */ private static final String NaN = "NaN"; private static final char[] charForDigit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }; public static final long DOUBLE_SIGN_MASK = 0x8000000000000000L; private static final long doubleExpMask = 0x7ff0000000000000L; private static final int doubleExpShift = 52; private static final int doubleExpBias = 1023; private static final long doubleFractMask = 0xfffffffffffffL; public static final int FLOAT_SIGN_MASK = 0x80000000; private static final int floatExpMask = 0x7f800000; private static final int floatExpShift = 23; private static final int floatExpBias = 127; private static final int floatFractMask = 0x7fffff; private static final BigInteger TEN = BigInteger.valueOf(10); private static final BigInteger NINE = BigInteger.valueOf(9); /** * Format an integer, appending the string representation of the integer to a string buffer * * @param s the string buffer * @param i the integer to be formatted * @return the supplied string buffer, containing the appended integer */ public static UnicodeBuilder appendInt(UnicodeBuilder s, int i) { // TODO: this elaborate machinery is only being used to output the exponent of a floating point number, // which never has more than 3 digits... if (i < 0) { if (i == Integer.MIN_VALUE) { //cannot make this positive due to integer overflow s.append("-2147483648"); return s; } s.append('-'); i = -i; } int c; if (i < 10) { //one digit s.append(charForDigit[i]); return s; } else if (i < 100) { //two digits s.append(charForDigit[i / 10]); s.append(charForDigit[i % 10]); return s; } else if (i < 1000) { //three digits s.append(charForDigit[i / 100]); s.append(charForDigit[(c = i % 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 10000) { //four digits s.append(charForDigit[i / 1000]); s.append(charForDigit[(c = i % 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 100000) { //five digits s.append(charForDigit[i / 10000]); s.append(charForDigit[(c = i % 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 1000000) { //six digits s.append(charForDigit[i / 100000]); s.append(charForDigit[(c = i % 100000) / 10000]); s.append(charForDigit[(c %= 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 10000000) { //seven digits s.append(charForDigit[i / 1000000]); s.append(charForDigit[(c = i % 1000000) / 100000]); s.append(charForDigit[(c %= 100000) / 10000]); s.append(charForDigit[(c %= 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 100000000) { //eight digits s.append(charForDigit[i / 10000000]); s.append(charForDigit[(c = i % 10000000) / 1000000]); s.append(charForDigit[(c %= 1000000) / 100000]); s.append(charForDigit[(c %= 100000) / 10000]); s.append(charForDigit[(c %= 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else if (i < 1000000000) { //nine digits s.append(charForDigit[i / 100000000]); s.append(charForDigit[(c = i % 100000000) / 10000000]); s.append(charForDigit[(c %= 10000000) / 1000000]); s.append(charForDigit[(c %= 1000000) / 100000]); s.append(charForDigit[(c %= 100000) / 10000]); s.append(charForDigit[(c %= 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } else { //ten digits s.append(charForDigit[i / 1000000000]); s.append(charForDigit[(c = i % 1000000000) / 100000000]); s.append(charForDigit[(c %= 100000000) / 10000000]); s.append(charForDigit[(c %= 10000000) / 1000000]); s.append(charForDigit[(c %= 1000000) / 100000]); s.append(charForDigit[(c %= 100000) / 10000]); s.append(charForDigit[(c %= 10000) / 1000]); s.append(charForDigit[(c %= 1000) / 100]); s.append(charForDigit[(c %= 100) / 10]); s.append(charForDigit[c % 10]); return s; } } /** * Implementation of the (FPP)2 algorithm from Steele and White, for doubles in the range * 0.01 to 1000000, and floats in the range 0.000001 to 1000000. * In this range (a) XPath requires that the output should not be in exponential * notation, and (b) the arithmetic can be handled using longs rather than BigIntegers * * @param sb the string buffer to which the formatted result is to be appended * @param e the exponent of the floating point number * @param f the fraction part of the floating point number, such that the "real" value of the * number is f * 2^(e-p), with p>=0 and 0 lt f lt 2^p * @param p the precision */ private static void fppfpp(UnicodeBuilder sb, int e, long f, int p) { long R = f << Math.max(e - p, 0); long S = 1L << Math.max(0, -(e - p)); long Mminus = 1L << Math.max(e - p, 0); long Mplus = Mminus; boolean initial = true; // simpleFixup if (f == 1L << (p - 1)) { Mplus = Mplus << 1; R = R << 1; S = S << 1; } int k = 0; while (R < (S + 9) / 10) { // (S+9)/10 == ceiling(S/10) k--; R = R * 10; Mminus = Mminus * 10; Mplus = Mplus * 10; } while (2 * R + Mplus >= 2 * S) { S = S * 10; k++; } for (int z = k; z < 0; z++) { if (initial) { sb.append("0."); } initial = false; sb.append('0'); } // end simpleFixup //int H = k-1; boolean low; boolean high; int U; while (true) { k--; long R10 = R * 10; U = (int) (R10 / S); R = R10 - (U * S); // = R*10 % S, but faster - saves a division Mminus = Mminus * 10; Mplus = Mplus * 10; low = 2 * R < Mminus; high = 2 * R > 2 * S - Mplus; if (low || high) break; if (k == -1) { if (initial) { sb.append('0'); } sb.append('.'); } sb.append(charForDigit[U]); initial = false; } if (high && (!low || 2 * R > S)) { U++; } if (k == -1) { if (initial) { sb.append('0'); } sb.append('.'); } sb.append(charForDigit[U]); for (int z = 0; z < k; z++) { sb.append('0'); } } /** * Implementation of the (FPP)2 algorithm from Steele and White, for doubles in the range * 0.000001 to 0.01. In this range XPath requires that the output should not be in exponential * notation, but the scale factors are large enough to exceed the capacity of long arithmetic. * * @param sb the string buffer to which the formatted result is to be appended * @param e the exponent of the floating point number * @param f the fraction part of the floating point number, such that the "real" value of the * number is f * 2^(e-p), with p>=0 and 0 lt f lt 2^p * @param p the precision */ private static void fppfppBig(UnicodeBuilder sb, int e, long f, int p) { //long R = f << Math.max(e-p, 0); BigInteger R = BigInteger.valueOf(f).shiftLeft(Math.max(e - p, 0)); //long S = 1L << Math.max(0, -(e-p)); BigInteger S = BigInteger.ONE.shiftLeft(Math.max(0, -(e - p))); //long Mminus = 1 << Math.max(e-p, 0); BigInteger Mminus = BigInteger.ONE.shiftLeft(Math.max(e - p, 0)); //long Mplus = Mminus; BigInteger Mplus = Mminus; boolean initial = true; // simpleFixup if (f == 1L << (p - 1)) { Mplus = Mplus.shiftLeft(1); R = R.shiftLeft(1); S = S.shiftLeft(1); } int k = 0; while (R.compareTo(S.add(NINE).divide(TEN)) < 0) { // (S+9)/10 == ceiling(S/10) k--; R = R.multiply(TEN); Mminus = Mminus.multiply(TEN); Mplus = Mplus.multiply(TEN); } while (R.shiftLeft(1).add(Mplus).compareTo(S.shiftLeft(1)) >= 0) { S = S.multiply(TEN); k++; } for (int z = k; z < 0; z++) { if (initial) { sb.append("0."); } initial = false; sb.append('0'); } // end simpleFixup //int H = k-1; boolean low; boolean high; int U; while (true) { k--; BigInteger R10 = R.multiply(TEN); U = R10.divide(S).intValue(); R = R10.mod(S); Mminus = Mminus.multiply(TEN); Mplus = Mplus.multiply(TEN); BigInteger R2 = R.shiftLeft(1); low = R2.compareTo(Mminus) < 0; high = R2.compareTo(S.shiftLeft(1).subtract(Mplus)) > 0; if (low || high) break; if (k == -1) { if (initial) { sb.append('0'); } sb.append('.'); } sb.append(charForDigit[U]); initial = false; } if (high && (!low || R.shiftLeft(1).compareTo(S) > 0)) { U++; } if (k == -1) { if (initial) { sb.append('0'); } sb.append('.'); } sb.append(charForDigit[U]); for (int z = 0; z < k; z++) { sb.append('0'); } } /** * Implementation of the (FPP)2 algorithm from Steele and White, for numbers outside the range * 0.000001 to 1000000. In this range XPath requires that the output should be in exponential * notation * * @param sb the string buffer to which the formatted result is to be appended * @param e the exponent of the floating point number * @param f the fraction part of the floating point number, such that the "real" value of the * number is f * 2^(e-p), with p>=0 and 0 lt f lt 2^p * @param p the precision */ private static void fppfppExponential(UnicodeBuilder sb, int e, long f, int p) { //long R = f << Math.max(e-p, 0); BigInteger R = BigInteger.valueOf(f).shiftLeft(Math.max(e - p, 0)); //long S = 1L << Math.max(0, -(e-p)); BigInteger S = BigInteger.ONE.shiftLeft(Math.max(0, -(e - p))); //long Mminus = 1 << Math.max(e-p, 0); BigInteger Mminus = BigInteger.ONE.shiftLeft(Math.max(e - p, 0)); //long Mplus = Mminus; BigInteger Mplus = Mminus; boolean initial = true; boolean doneDot = false; // simpleFixup if (f == 1L << (p - 1)) { Mplus = Mplus.shiftLeft(1); R = R.shiftLeft(1); S = S.shiftLeft(1); } int k = 0; while (R.compareTo(S.add(NINE).divide(TEN)) < 0) { // (S+9)/10 == ceiling(S/10) k--; R = R.multiply(TEN); Mminus = Mminus.multiply(TEN); Mplus = Mplus.multiply(TEN); } while (R.shiftLeft(1).add(Mplus).compareTo(S.shiftLeft(1)) >= 0) { S = S.multiply(TEN); k++; } // end simpleFixup int H = k - 1; boolean low; boolean high; int U; while (true) { k--; BigInteger R10 = R.multiply(TEN); U = R10.divide(S).intValue(); R = R10.mod(S); Mminus = Mminus.multiply(TEN); Mplus = Mplus.multiply(TEN); BigInteger R2 = R.shiftLeft(1); low = R2.compareTo(Mminus) < 0; high = R2.compareTo(S.shiftLeft(1).subtract(Mplus)) > 0; if (low || high) break; sb.append(charForDigit[U]); if (initial) { sb.append('.'); doneDot = true; } initial = false; } if (high && (!low || R.shiftLeft(1).compareTo(S) > 0)) { U++; } sb.append(charForDigit[U]); if (!doneDot) { sb.append(".0"); } sb.append('E'); appendInt(sb, H); } /** * Append a string representation of a double value to a string buffer * * @param d the double to be formatted * @param forceExponential forces exponential notation if set (if not set, exponential notation * is used only for values outside the range 1e-6 to 1e+6) * @return the original string buffer, now containing the string representation of the supplied double */ //@CSharpReplaceBody(code = "return net.sf.saxon.str.BMPString.of(d.ToString(System.Globalization.CultureInfo.InvariantCulture));") // for now... public static UnicodeString convertDouble(double d, boolean forceExponential) { UnicodeBuilder s = new UnicodeBuilder(32); if (d == Double.NEGATIVE_INFINITY) { s.appendLatin(NEGATIVE_INFINITY); } else if (d == Double.POSITIVE_INFINITY) { s.appendLatin(POSITIVE_INFINITY); } else if (Double.isNaN(d)) { s.appendLatin(NaN); } else if (d == 0.0) { if ((Double.doubleToLongBits(d) & DOUBLE_SIGN_MASK) != 0) { s.append('-'); } s.append('0'); if (forceExponential) { s.append(".0E0"); } } else if (d == Double.MAX_VALUE) { s.append("1.7976931348623157E308"); } else if (d == -Double.MAX_VALUE) { s.append("-1.7976931348623157E308"); } else if (d == Double.MIN_VALUE) { s.append("4.9E-324"); } else if (d == -Double.MIN_VALUE) { s.append("-4.9E-324"); } else { if (d < 0) { s.append('-'); d = -d; } long bits = Double.doubleToLongBits(d); long fraction = (1L << 52) | (bits & doubleFractMask); long rawExp = (bits & doubleExpMask) >> doubleExpShift; int exp = (int) rawExp - doubleExpBias; if (rawExp == 0) { // don't know how to handle this currently: hand it over to Java to deal with s.append(Double.toString(d)); return s.toUnicodeString(); } if (forceExponential || (d >= 1000000 || d < 0.000001)) { fppfppExponential(s, exp, fraction, 52); } else { if (d <= 0.01) { fppfppBig(s, exp, fraction, 52); } else { fppfpp(s, exp, fraction, 52); } } } return s.toUnicodeString(); } /** * Append a string representation of a float value to a string buffer * * @param s the string buffer to which the result will be appended * @param f the float to be formatted * @param forceExponential forces exponential notation if set (if not set, exponential notation * is used only for values outside the range 1e-6 to 1e+6) * @return the original string buffer, now containing the string representation of the supplied float */ /*@NotNull*/ //@CSharpReplaceBody(code="return s.append(f.ToString(System.Globalization.CultureInfo.InvariantCulture)).toUnicodeString();") // for now... public static UnicodeString appendFloat(UnicodeBuilder s, float f, boolean forceExponential) { if (f == Float.NEGATIVE_INFINITY) { s.append(NEGATIVE_INFINITY); } else if (f == Float.POSITIVE_INFINITY) { s.append(POSITIVE_INFINITY); } else if (Float.isNaN(f)) { s.append(NaN); } else if (f == 0.0) { if ((Float.floatToIntBits(f) & FLOAT_SIGN_MASK) != 0) { s.append('-'); } s.append('0'); } else if (f == Float.MAX_VALUE) { s.appendLatin("3.4028235E38"); } else if (f == -Float.MAX_VALUE) { s.appendLatin("-3.4028235E38"); } else if (f == Float.MIN_VALUE) { s.appendLatin("1.4E-45"); } else if (f == -Float.MIN_VALUE) { s.appendLatin("-1.4E-45"); } else { if (f < 0) { s.append('-'); f = -f; } int bits = Float.floatToIntBits(f); int fraction = (1 << 23) | (bits & floatFractMask); int rawExp = ((bits & floatExpMask) >> floatExpShift); int exp = rawExp - floatExpBias; int precision = 23; if (rawExp == 0) { // don't know how to handle this currently: hand it over to Java to deal with s.append(Float.toString(f)); return s.toUnicodeString(); } if (forceExponential || (f >= 1000000 || f < 0.000001F)) { fppfppExponential(s, exp, fraction, precision); } else { fppfpp(s, exp, fraction, precision); } } return s.toUnicodeString(); } // public static void main(String[] args) { // if (args.length > 0 && args[0].equals("F")) { // if (args.length == 2) { // StringTokenizer tok = new StringTokenizer(args[1], ","); // while (tok.hasMoreElements()) { // String input = tok.nextToken(); // float f = Float.parseFloat(input); // StringBuilder sb = new StringBuilder(20); // appendFloat(sb, f); // System.err.println("input: " + input + " output: " + sb.toString() + " java: " + f); // } // } else { // Random gen = new Random(); // for (int i=1; i<1000; i++) { // int p=gen.nextInt(999*i*i); // int q=gen.nextInt(999*i*i); // String input = (p + "." + q); // float f = Float.parseFloat(input); // StringBuilder sb = new StringBuilder(20); // appendFloat(sb, f); // System.err.println("input: " + input + " output: " + sb.toString() + " java: " + f); // } // } // } else { // if (args.length == 2) { // StringTokenizer tok = new StringTokenizer(args[1], ","); // while (tok.hasMoreElements()) { // String input = tok.nextToken(); // double f = Double.parseDouble(input); // StringBuilder sb = new StringBuilder(20); // appendDouble(sb, f); // System.err.println("input: " + input + " output: " + sb.toString() + " java: " + f); // } // } else { // long start = System.currentTimeMillis(); // Random gen = new Random(); // for (int i=1; i<100000; i++) { // //int p=gen.nextInt(999*i*i); // int q=gen.nextInt(999*i); // //String input = (p + "." + q); // String input = "0.000" + q; // double f = Double.parseDouble(input); // StringBuilder sb = new StringBuilder(20); // appendDouble(sb, f); // //System.err.println("input: " + input + " output: " + sb.toString() + " java: " + f); // } // System.err.println("** elapsed time " + (System.currentTimeMillis() - start)); // } // } // } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy