net.sf.saxon.expr.LetExpression Maven / Gradle / Ivy
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2015 Saxonica Limited.
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package net.sf.saxon.expr;
import net.sf.saxon.evpull.EventIterator;
import net.sf.saxon.expr.instruct.DocumentInstr;
import net.sf.saxon.expr.instruct.GlobalVariable;
import net.sf.saxon.expr.instruct.TailCall;
import net.sf.saxon.expr.instruct.TailCallReturner;
import net.sf.saxon.expr.parser.*;
import net.sf.saxon.om.*;
import net.sf.saxon.trace.ExpressionPresenter;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.ItemType;
import net.sf.saxon.type.SchemaType;
import net.sf.saxon.value.Cardinality;
import net.sf.saxon.value.IntegerValue;
import net.sf.saxon.value.SequenceType;
/**
* A LetExpression represents the XQuery construct let $x := expr return expr. It is used
* also for XSLT local variables.
*/
public class LetExpression extends Assignation implements TailCallReturner {
private int evaluationMode = ExpressionTool.UNDECIDED;
private boolean needsEagerEvaluation = false;
/**
* Create a LetExpression
*/
public LetExpression() {
//System.err.println("let");
}
/**
* Get a name identifying the kind of expression, in terms meaningful to a user.
*
* @return a name identifying the kind of expression, in terms meaningful to a user.
* The name will always be in the form of a lexical XML QName, and should match the name used
* in explain() output displaying the expression.
*/
public String getExpressionName() {
return "let";
}
public void setNeedsEagerEvaluation(boolean req) {
this.needsEagerEvaluation = req;
}
// private void recomputeRefCount() {
// if (refCount != FilterExpression.FILTERED) {
// setRefCount(countReferences(this, this, false));
// }
// }
//
// private static int countReferences(LetExpression let, Expression child, boolean inLoop) {
// List visits = new ArrayList();
// visits.add(0);
// return countReferencesInternal(let, child, inLoop, visits);
// }
//
// private static int countReferencesInternal(LetExpression let, Expression child, boolean inLoop, List visits) {
// int total = 0;
// for (Operand o : child.operands()) {
// Expression g = o.getChildExpression();
// boolean repeated = inLoop || o.isEvaluatedRepeatedly();
// if (!repeated && !o.hasSameFocus() && ExpressionTool.dependsOnFocus(let.getSequence())) {
// repeated = true;
// }
// if (g instanceof LocalVariableReference && ((LocalVariableReference) g).getBinding() == let) {
// total += repeated ? 10 : 1;
// } else {
// int v = visits.get(0) + 1;
// if (v > 100) {
// return 17; // enough; no point wasting more time on this
// }
// visits.set(0, v);
// total += countReferencesInternal(let, g, repeated, visits);
// }
// if (total >= 3) {
// break;
// }
// }
// return total;
// }
//
// public void setRefCount(int refCount) {
// this.refCount = refCount;
// }
@Override
public void resetLocalStaticProperties() {
super.resetLocalStaticProperties();
references = null;
// if (refCount != FilterExpression.FILTERED) {
// setRefCount(-1);
// }
}
/**
* Type-check the expression. This also has the side-effect of counting the number of references
* to the variable (treating references that occur within a loop specially)
*/
/*@NotNull*/
public Expression typeCheck(ExpressionVisitor visitor, ContextItemStaticInfo contextInfo) throws XPathException {
// The order of events is critical here. First we ensure that the type of the
// sequence expression is established. This is used to establish the type of the variable,
// which in turn is required when type-checking the action part.
getSequenceOp().typeCheck(visitor, contextInfo);
RoleDiagnostic role = new RoleDiagnostic(RoleDiagnostic.VARIABLE, getVariableQName().getDisplayName(), 0);
//role.setSourceLocator(this);
setSequence(TypeChecker.strictTypeCheck(
getSequence(), requiredType, role, visitor.getStaticContext()));
final ItemType actualItemType = getSequence().getItemType();
refineTypeInformation(actualItemType,
getSequence().getCardinality(),
getSequence() instanceof Literal ? ((Literal) getSequence()).getValue() : null,
getSequence().getSpecialProperties(), this);
// boolean indexed = refCount == FilterExpression.FILTERED;
// refCount = 0;
getActionOp().typeCheck(visitor, contextInfo);
// if (indexed) {
// refCount = FilterExpression.FILTERED;
// }
return this;
}
/**
* Determine whether this expression implements its own method for static type checking
*
* @return true - this expression has a non-trivial implementation of the staticTypeCheck()
* method
*/
public boolean implementsStaticTypeCheck() {
return true;
}
/**
* Static type checking for let expressions is delegated to the expression itself,
* and is performed on the "action" expression, to allow further delegation to the branches
* of a conditional
*
*
* @param req the required type
* @param backwardsCompatible true if backwards compatibility mode applies
* @param role the role of the expression in relation to the required type
* @param visitor an expression visitor
* @return the expression after type checking (perhaps augmented with dynamic type checking code)
* @throws XPathException if failures occur, for example if the static type of one branch of the conditional
* is incompatible with the required type
*/
public Expression staticTypeCheck(SequenceType req,
boolean backwardsCompatible,
RoleDiagnostic role, ExpressionVisitor visitor)
throws XPathException {
setAction(TypeChecker.staticTypeCheck(getAction(), req, backwardsCompatible, role, visitor));
return this;
}
/**
* Perform optimisation of an expression and its subexpressions.
*
* This method is called after all references to functions and variables have been resolved
* to the declaration of the function or variable, and after all type checking has been done.
*
* @param visitor an expression visitor
* @param contextItemType the static type of "." at the point where this expression is invoked.
* The parameter is set to null if it is known statically that the context item will be undefined.
* If the type of the context item is not known statically, the argument is set to
* {@link net.sf.saxon.type.Type#ITEM_TYPE}
* @return the original expression, rewritten if appropriate to optimize execution
* @throws XPathException if an error is discovered during this phase
* (typically a type error)
*/
/*@NotNull*/
public Expression optimize(ExpressionVisitor visitor, ContextItemStaticInfo contextItemType) throws XPathException {
Optimizer opt = getConfiguration().obtainOptimizer();
// if this is a construct of the form "let $j := EXP return $j" replace it with EXP
// Remarkably, people do write this, and it can also be produced by previous rewrites
// Note that type checks will already have been added to the sequence expression
if (getAction() instanceof VariableReference &&
((VariableReference) getAction()).getBinding() == this &&
!ExpressionTool.changesXsltContext(getSequence())) {
getSequenceOp().optimize(visitor, contextItemType);
opt.trace("Eliminated trivial variable " + getVariableName(), getSequence());
return getSequence();
}
if (getSequence() instanceof Literal) {
// inline the variable: replace all references by the constant value
// This relies on the fact that optimizing the action part will cause any references to be inlined
opt.trace("Inlined constant variable " + getVariableName(), getSequence());
return getAction().optimize(visitor, contextItemType);
}
// if this is an XSLT construct of the form text , try to replace
// it by . This can be done if all the references to the variable use
// its value as a string (rather than, say, as a node or as a boolean)
if (getSequence() instanceof DocumentInstr && ((DocumentInstr) getSequence()).isTextOnly()) {
// Ensure the list of references is accurate
verifyReferences();
// Check whether all uses of the variable are atomized or stringified
if (allReferencesAreFlattened()) {
Expression stringValueExpression = ((DocumentInstr) getSequence()).getStringValueExpression();
stringValueExpression = stringValueExpression.typeCheck(visitor, contextItemType);
setSequence(stringValueExpression);
requiredType = SequenceType.SINGLE_UNTYPED_ATOMIC;
adoptChildExpression(getSequence());
refineTypeInformation(requiredType.getPrimaryType(), requiredType.getCardinality(), null, 0, this);
}
}
// Removal of redundant variables, and inlining of variables that are only used once, depends on accurate
// knowledge of all references to the variable. The problem is that obtaining this knowledge can be expensive:
// see bug 2707. On the other hand, failing to do these optimizations is not fatal. So the general approach
// is that we limit the time spent discovering the information, and we don't do the optimization unless
// it is safe.
// Typically on entry to optimize(), the typeCheck() method has already been called, and this has set up
// a list of references. First we examine this list of references and remove any that are "dead", that is
// they no longer have this LetExpression as an ancestor in the expression tree. This function also checks
// whether any of these references are known to be in a loop, and returns true if so.
hasLoopingReference |= removeDeadReferences();
// If there are less than two references, and none is in a loop, then there is potential
// for optimization. But we now need to be absolutely sure that we have an accurate list
// of references.
boolean considerRemoval = ((references != null && references.size() < 2) || getSequence() instanceof VariableReference) &&
!isIndexedVariable && !hasLoopingReference && !needsEagerEvaluation;
if (considerRemoval) {
verifyReferences();
// At this point the list of references is either accurate, or null
considerRemoval = references != null;
}
if (considerRemoval && references.isEmpty()) {
// variable is not used - no need to evaluate it
getActionOp().optimize(visitor, contextItemType);
opt.trace("Eliminated unused variable " + getVariableName(), getAction());
return getAction();
}
// Don't inline context-dependent variables in a streamable template. See strmode011.
// The reason for this is that a variable
// can be evaluated in streaming mode, but an arbitrary expression using copy() inline can't (e.g.
// if it appears in a path expression or as an operand of an arithmetic expression)
if (considerRemoval && references.size() == 1 && ExpressionTool.dependsOnFocus(getSequence())) {
if (visitor.isOptimizeForStreaming()) {
considerRemoval = false;
}
}
// Don't inline variables whose initializer might contain a call to xsl:result-document
if (considerRemoval && references.size() == 1 && ExpressionTool.changesXsltContext(getSequence())) {
considerRemoval = false;
}
if (considerRemoval && (references.size() == 1 || getSequence() instanceof Literal || getSequence() instanceof VariableReference)) {
inlineReferences();
references = null;
return getAction().optimize(visitor, contextItemType);
}
int tries = 0;
while (tries++ < 5) {
Expression seq0 = getSequence();
getSequenceOp().optimize(visitor, contextItemType);
if (getSequence() instanceof Literal && !isIndexedVariable) {
return getAction().optimize(visitor, contextItemType);
}
if (seq0 == getSequence()) {
break;
}
}
tries = 0;
while (tries++ < 5) {
Expression act0 = getAction();
getActionOp().optimize(visitor, contextItemType);
if (act0 == getAction()) {
break;
}
if (!isIndexedVariable) {
verifyReferences();
if (references != null && references.size() < 2) {
if (references.isEmpty()) {
// We may have removed references to the variable; try again at eliminating this expression.
return optimize(visitor, contextItemType);
} else {
// there is one remaining reference; try again at inlining if it's not in a loop
if (!references.get(0).isInLoop()) {
return optimize(visitor, contextItemType);
}
}
}
}
}
// Don't use lazy evaluation for a variable that is referenced inside the "try" part of a contained try catch (XSLT3 test try-031)
if (needsEagerEvaluation) {
setEvaluationMode(ExpressionTool.eagerEvaluationMode(getSequence()));
} else if (isIndexedVariable()) {
setEvaluationMode(ExpressionTool.MAKE_CLOSURE);
} else {
setEvaluationMode(ExpressionTool.lazyEvaluationMode(getSequence()));
}
return this;
}
private void inlineReferences() {
// Note that the list of references might include references that are no longer reachable on the tree.
// We therefore take no action if (a) the parent of the reference is null, or (b) the reference is
// not found among the children of its parent.
for (VariableReference ref : references) {
Expression parent = ref.getParentExpression();
if (parent != null) {
for (Operand o : parent.operands()) {
if (o.getChildExpression() == ref) {
o.setChildExpression(getSequence().copy(new RebindingMap()));
break;
}
}
ExpressionTool.resetStaticProperties(parent);
}
}
}
/**
* Return the estimated cost of evaluating an expression. This is a very crude measure based
* on the syntactic form of the expression (we have no knowledge of data values). We take
* the cost of evaluating a simple scalar comparison or arithmetic expression as 1 (one),
* and we assume that a sequence has length 5. The resulting estimates may be used, for
* example, to reorder the predicates in a filter expression so cheaper predicates are
* evaluated first.
*/
@Override
public int getCost() {
return getSequence().getCost() + getAction().getCost();
}
/**
* Determine whether all references to this variable are using the value either
* (a) by atomizing it, or (b) by taking its string value. (This excludes usages
* such as testing the existence of a node or taking the effective boolean value).
*
* @return true if all references are known to atomize (or stringify) the value,
* false otherwise. The value false may indicate "not known".
*/
private boolean allReferencesAreFlattened() throws XPathException {
if (references != null) {
for (VariableReference ref : references) {
if (!ref.isFlattened()) {
return false;
}
}
return true;
}
return false;
}
/**
* Determine whether this is a vacuous expression as defined in the XQuery update specification
*
* @return true if this expression is vacuous
*/
public boolean isVacuousExpression() {
return getAction().isVacuousExpression();
}
/**
* Check that any elements and attributes constructed or returned by this expression are acceptable
* in the content model of a given complex type. It's always OK to say yes, since the check will be
* repeated at run-time. The process of checking element and attribute constructors against the content
* model of a complex type also registers the type of content expected of those constructors, so the
* static validation can continue recursively.
*/
public void checkPermittedContents(SchemaType parentType, boolean whole) throws XPathException {
getAction().checkPermittedContents(parentType, whole);
}
/**
* For an expression that returns an integer or a sequence of integers, get
* a lower and upper bound on the values of the integers that may be returned, from
* static analysis. The default implementation returns null, meaning "unknown" or
* "not applicable". Other implementations return an array of two IntegerValue objects,
* representing the lower and upper bounds respectively. The values
* UNBOUNDED_LOWER and UNBOUNDED_UPPER are used by convention to indicate that
* the value may be arbitrarily large. The values MAX_STRING_LENGTH and MAX_SEQUENCE_LENGTH
* are used to indicate values limited by the size of a string or the size of a sequence.
*
* @return the lower and upper bounds of integer values in the result, or null to indicate
* unknown or not applicable.
*/
/*@Nullable*/
@Override
public IntegerValue[] getIntegerBounds() {
return getAction().getIntegerBounds();
}
/**
* An implementation of Expression must provide at least one of the methods evaluateItem(), iterate(), or process().
* This method indicates which of these methods is provided directly. The other methods will always be available
* indirectly, using an implementation that relies on one of the other methods.
*
* @return the implementation method, for example {@link #ITERATE_METHOD} or {@link #EVALUATE_METHOD} or
* {@link #PROCESS_METHOD}
*/
@Override
public int getImplementationMethod() {
return getAction().getImplementationMethod();
}
/**
* Iterate over the result of the expression to return a sequence of items
*/
/*@NotNull*/
public SequenceIterator iterate(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
return let.getAction().iterate(context);
}
/**
* Iterate over the result of the expression to return a sequence of events
*/
public EventIterator iterateEvents(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
return let.getAction().iterateEvents(context);
}
/**
* Evaluate the variable.
*
* @param context the dynamic evaluation context
* @return the result of evaluating the expression that is bound to the variable
*/
public Sequence eval(XPathContext context) throws XPathException {
if (evaluationMode == ExpressionTool.UNDECIDED) {
setEvaluationMode(ExpressionTool.lazyEvaluationMode(getSequence()));
}
int savedOutputState = context.getTemporaryOutputState();
context.setTemporaryOutputState(StandardNames.XSL_VARIABLE);
Sequence result = ExpressionTool.evaluate(getSequence(), evaluationMode, context, getNominalReferenceCount());
context.setTemporaryOutputState(savedOutputState);
return result;
}
/**
* Evaluate the expression as a singleton
*/
public Item evaluateItem(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
return let.getAction().evaluateItem(context);
}
/**
* Get the effective boolean value of the expression. This returns false if the value
* is the empty sequence, a zero-length string, a number equal to zero, or the boolean
* false. Otherwise it returns true.
*
* @param context The context in which the expression is to be evaluated
* @return the effective boolean value
* @throws net.sf.saxon.trans.XPathException
* if any dynamic error occurs evaluating the
* expression
*/
public boolean effectiveBooleanValue(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
return let.getAction().effectiveBooleanValue(context);
}
/**
* Process this expression as an instruction, writing results to the current
* outputter
*/
public void process(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
let.getAction().process(context);
}
/**
* Determine the data type of the items returned by the expression, if possible
*
* @return one of the values Type.STRING, Type.BOOLEAN, Type.NUMBER, Type.NODE,
* or Type.ITEM (meaning not known in advance)
*/
/*@NotNull*/
public ItemType getItemType() {
return getAction().getItemType();
}
/**
* Determine the static cardinality of the expression
*/
public int computeCardinality() {
return getAction().getCardinality();
}
/**
* Get the static properties of this expression (other than its type). The result is
* bit-signficant. These properties are used for optimizations. In general, if
* property bit is set, it is true, but if it is unset, the value is unknown.
*/
public int computeSpecialProperties() {
int props = getAction().getSpecialProperties();
int seqProps = getSequence().getSpecialProperties();
if ((seqProps & StaticProperty.NON_CREATIVE) == 0) {
props &= ~StaticProperty.NON_CREATIVE;
}
return props;
}
/**
* Mark tail function calls
*/
public int markTailFunctionCalls(StructuredQName qName, int arity) {
return ExpressionTool.markTailFunctionCalls(getAction(), qName, arity);
}
/**
* Promote this expression if possible
*/
public Expression promote(PromotionOffer offer) throws XPathException {
Expression exp = offer.accept(this);
if (exp != null) {
return exp;
} else {
// pass the offer on to the sequence expression
Expression seq2 = doPromotion(getSequence(), offer);
if (seq2 != getSequence()) {
// if we've extracted a global variable, it may need to be marked indexable
if (seq2 instanceof VariableReference) {
Binding b = ((VariableReference) seq2).getBinding();
if (b instanceof GlobalVariable && isIndexedVariable) {
((GlobalVariable) b).setIndexedVariable();
}
}
setSequence(seq2);
}
if (offer.action == PromotionOffer.EXTRACT_GLOBAL_VARIABLES) {
setAction(doPromotion(getAction(), offer));
} else if (offer.action == PromotionOffer.RANGE_INDEPENDENT ||
offer.action == PromotionOffer.FOCUS_INDEPENDENT) {
// Pass the offer to the action expression after adding the variable bound by this let expression,
// so that a subexpression must depend on neither variable if it is to be promoted
Binding[] savedBindingList = offer.bindingList;
offer.bindingList = extendBindingList(offer.bindingList);
setAction(doPromotion(getAction(), offer));
offer.bindingList = savedBindingList;
}
// if this results in the expression (let $x := $y return Z), replace all references to
// to $x by references to $y in the Z part, and eliminate this LetExpression by
// returning the action part.
if (getSequence() instanceof VariableReference && !needsEagerEvaluation) {
rebuildReferenceList(true);
if (references != null) {
inlineReferences();
return getAction();
}
}
references = null;
return this;
}
}
/**
* Copy an expression. This makes a deep copy.
*
* @return the copy of the original expression
* @param rebindings
*/
/*@NotNull*/
public Expression copy(RebindingMap rebindings) {
LetExpression let = new LetExpression();
ExpressionTool.copyLocationInfo(this, let);
let.isIndexedVariable = isIndexedVariable;
let.hasLoopingReference = hasLoopingReference;
let.setNeedsEagerEvaluation(needsEagerEvaluation);
let.setVariableQName(variableName);
let.setRequiredType(requiredType);
let.setSequence(getSequence().copy(rebindings));
Expression newAction = getAction().copy(rebindings);
let.setAction(newAction);
ExpressionTool.rebindVariableReferences(newAction, this, let);
return let;
}
/**
* ProcessLeavingTail: called to do the real work of this instruction.
* The results of the instruction are written
* to the current Receiver, which can be obtained via the Controller.
*
* @param context The dynamic context of the transformation, giving access to the current node,
* the current variables, etc.
* @return null if the instruction has completed execution; or a TailCall indicating
* a function call or template call that is delegated to the caller, to be made after the stack has
* been unwound so as to save stack space.
*/
public TailCall processLeavingTail(XPathContext context) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
if (let.getAction() instanceof TailCallReturner) {
return ((TailCallReturner) let.getAction()).processLeavingTail(context);
} else {
let.getAction().process(context);
return null;
}
}
/**
* Evaluate an updating expression, adding the results to a Pending Update List.
* The default implementation of this method, which is used for non-updating expressions,
* throws an UnsupportedOperationException
*
* @param context the XPath dynamic evaluation context
* @param pul the pending update list to which the results should be written
*/
public void evaluatePendingUpdates(XPathContext context, PendingUpdateList pul) throws XPathException {
// minimize stack consumption by evaluating nested LET expressions iteratively
LetExpression let = this;
while (true) {
Sequence val = let.eval(context);
context.setLocalVariable(let.getLocalSlotNumber(), val);
if (let.getAction() instanceof LetExpression) {
let = (LetExpression) let.getAction();
} else {
break;
}
}
let.getAction().evaluatePendingUpdates(context, pul);
}
/**
* The toString() method for an expression attempts to give a representation of the expression
* in an XPath-like form, but there is no guarantee that the syntax will actually be true XPath.
* In the case of XSLT instructions, the toString() method gives an abstracted view of the syntax
*
* @return a representation of the expression as a string
*/
public String toString() {
return "let $" + getVariableEQName() + " := " + getSequence().toString() +
" return " + ExpressionTool.parenthesize(getAction());
}
/**
* Produce a short string identifying the expression for use in error messages
*
* @return a short string, sufficient to identify the expression
*/
@Override
public String toShortString() {
return "let $" + getVariableName() + " := ...";
}
/**
* Diagnostic print of expression structure. The abstract expression tree
* is written to the supplied output destination.
*/
public void export(ExpressionPresenter out) throws XPathException {
out.startElement("let", this);
out.emitAttribute("var", variableName);
out.emitAttribute("as", getSequence().getItemType().toString() +
Cardinality.getOccurrenceIndicator(getSequence().getCardinality()));
if (isIndexedVariable()) {
out.emitAttribute("indexable", "true");
}
out.emitAttribute("slot", getLocalSlotNumber() + "");
out.emitAttribute("eval", getEvaluationMode() + "");
getSequence().export(out);
getAction().export(out);
out.endElement();
}
public void setEvaluationMode(int evaluationMode) {
this.evaluationMode = evaluationMode;
}
public int getEvaluationMode() {
return evaluationMode;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy