net.sf.saxon.om.AtomicArray Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of Saxon-HE Show documentation
Show all versions of Saxon-HE Show documentation
The XSLT and XQuery Processor
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2015 Saxonica Limited.
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package net.sf.saxon.om;
import net.sf.saxon.expr.parser.ExpressionTool;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.tree.iter.AtomicIterator;
import net.sf.saxon.tree.iter.ListIterator;
import net.sf.saxon.tree.iter.UnfailingIterator;
import net.sf.saxon.tree.util.FastStringBuffer;
import net.sf.saxon.value.AtomicValue;
import net.sf.saxon.value.EmptySequence;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
/**
* A sequence of atomic values, implemented using an underlying arrayList.
*
* Often used for representing the typed value of a list-valued node.
*
* @since 9.5
*/
public class AtomicArray implements AtomicSequence {
private static List emptyAtomicList = Collections.emptyList();
public static AtomicArray EMPTY_ATOMIC_ARRAY = new AtomicArray(emptyAtomicList);
private List content;
/**
* Create an AtomicArray over a supplied arrayList of atomic values
*
* @param content the supplied arrayList. The caller warrants that the contents of this array will not change.
*/
public AtomicArray(List content) {
this.content = content;
}
/**
* Create an AtomicArray supplying the contents as an iterator
*
* @param iter the iterator that supplies the atomic values (which must be position
* at the start of the sequence, and which will be consumed by the method).
* @throws XPathException if evaluation of the SequenceIterator fails
* @throws ClassCastException if any of the items returned by the SequenceIterator is not atomic
*/
public AtomicArray(SequenceIterator iter) throws XPathException {
ArrayList list = new ArrayList(10);
AtomicValue item;
while ((item = (AtomicValue)iter.next()) != null) {
list.add(item);
}
content = list;
}
public AtomicValue head() {
return content.size() > 0 ? content.get(0) : null;
}
public AtomicIterator iterate() {
return new ListIterator.Atomic(content);
}
/**
* Get the n'th item in the sequence (base-zero addressing)
*
* @param n the index of the required item, the first item being zero
* @return the n'th item if n is in range, or null otherwise
*/
public AtomicValue itemAt(int n) {
if (n >= 0 && n < content.size()) {
return content.get(n);
} else {
return null;
}
}
/**
* Get the length of the sequence
*
* @return the number of items in the sequence
*/
public int getLength() {
return content.size();
}
/**
* Get a subsequence of this sequence
*
* @param start the index of the first item to be included in the result, counting from zero.
* A negative value is taken as zero. If the value is beyond the end of the sequence, an empty
* sequence is returned
* @param length the number of items to be included in the result. Specify Integer.MAX_VALUE to
* get the subsequence up to the end of the base sequence. If the value is negative, an empty sequence
* is returned. If the value goes off the end of the sequence, the result returns items up to the end
* of the sequence
* @return the required subsequence
*/
public AtomicArray subsequence(int start, int length) {
if (start < 0) {
start = 0;
}
if (start + length > content.size()) {
length = content.size() - start;
}
return new AtomicArray(content.subList(start, start+length));
}
/**
* Get the canonical lexical representation as defined in XML Schema. This is not always the same
* as the result of casting to a string according to the XPath rules.
*
* @return the canonical lexical representation if defined in XML Schema; otherwise, the result
* of casting to string according to the XPath 2.0 rules
*/
public CharSequence getCanonicalLexicalRepresentation() {
return getStringValueCS();
}
/**
* Get the value of the item as a CharSequence. This is in some cases more efficient than
* the version of the method that returns a String.
*/
public CharSequence getStringValueCS() {
FastStringBuffer fsb = new FastStringBuffer(FastStringBuffer.C64);
boolean first = true;
for (AtomicValue av : content) {
if (!first) {
fsb.append(' ');
} else {
first = false;
}
fsb.append(av.getStringValueCS());
}
return fsb.condense();
}
public String getStringValue() {
return getStringValueCS().toString();
}
public boolean effectiveBooleanValue() throws XPathException {
return ExpressionTool.effectiveBooleanValue(iterate());
}
/**
* Get a Comparable value that implements the XML Schema ordering comparison semantics for this value.
* The default implementation is written to compare sequences of atomic values.
* This method is overridden for AtomicValue and its subclasses.
*
* In the case of data types that are partially ordered, the returned Comparable extends the standard
* semantics of the compareTo() method by returning the value {@link SequenceTool#INDETERMINATE_ORDERING} when there
* is no defined order relationship between two given values.
*
* For comparing key/keyref values, XSD 1.1 defines that a singleton list is equal to its only member. To
* achieve this, this method returns the schema comparable of the singleton member if the list has length one.
* This won't give the correct ordering semantics, but we rely on lists never taking part in ordering comparisons.
*
* @return a Comparable that follows XML Schema comparison rules
*/
public Comparable getSchemaComparable() {
if (content.size() == 1) {
return content.get(0).getSchemaComparable();
} else {
return new ValueSchemaComparable();
}
}
private class ValueSchemaComparable implements Comparable {
public AtomicArray getValue() {
return AtomicArray.this;
}
public int compareTo(ValueSchemaComparable obj) {
UnfailingIterator iter1 = getValue().iterate();
UnfailingIterator iter2 = obj.getValue().iterate();
while (true) {
AtomicValue item1 = (AtomicValue)iter1.next();
AtomicValue item2 = (AtomicValue)iter2.next();
if (item1 == null && item2 == null) {
return 0;
}
if (item1 == null) {
return -1;
} else if (item2 == null) {
return +1;
}
int c = item1.getSchemaComparable().compareTo(item2.getSchemaComparable());
if (c != 0) {
return c;
}
}
}
public boolean equals(/*@NotNull*/ Object obj) {
return ValueSchemaComparable.class.isAssignableFrom(obj.getClass())
&& compareTo((ValueSchemaComparable) obj) == 0;
}
public int hashCode() {
try {
int hash = 0x06639662; // arbitrary seed
SequenceIterator iter = getValue().iterate();
while (true) {
Item item = iter.next();
if (item == null) {
return hash;
}
if (item instanceof AtomicValue) {
hash ^= ((AtomicValue) item).getSchemaComparable().hashCode();
}
}
} catch (XPathException e) {
return 0;
}
}
}
/**
* Reduce the sequence to its simplest form. If the value is an empty sequence, the result will be
* EmptySequence.getInstance(). If the value is a single atomic value, the result will be an instance
* of AtomicValue. If the value is a single item of any other kind, the result will be an instance
* of SingletonItem. Otherwise, the result will typically be unchanged.
*
* @return the simplified sequence
*/
public GroundedValue reduce() {
int len = getLength();
if (len == 0) {
return EmptySequence.getInstance();
} else if (len == 1) {
return itemAt(0);
} else {
return this;
}
}
/**
* Returns a Java iterator over the atomic sequence.
*
* @return an Iterator.
*/
public Iterator iterator() {
return content.iterator();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy