All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.saxon.om.AtomicArray Maven / Gradle / Ivy

There is a newer version: 12.5
Show newest version
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2015 Saxonica Limited.
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

package net.sf.saxon.om;

import net.sf.saxon.expr.parser.ExpressionTool;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.tree.iter.AtomicIterator;
import net.sf.saxon.tree.iter.ListIterator;
import net.sf.saxon.tree.iter.UnfailingIterator;
import net.sf.saxon.tree.util.FastStringBuffer;
import net.sf.saxon.value.AtomicValue;
import net.sf.saxon.value.EmptySequence;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

/**
 * A sequence of atomic values, implemented using an underlying arrayList.
 * 

* Often used for representing the typed value of a list-valued node. * * @since 9.5 */ public class AtomicArray implements AtomicSequence { private static List emptyAtomicList = Collections.emptyList(); public static AtomicArray EMPTY_ATOMIC_ARRAY = new AtomicArray(emptyAtomicList); private List content; /** * Create an AtomicArray over a supplied arrayList of atomic values * * @param content the supplied arrayList. The caller warrants that the contents of this array will not change. */ public AtomicArray(List content) { this.content = content; } /** * Create an AtomicArray supplying the contents as an iterator * * @param iter the iterator that supplies the atomic values (which must be position * at the start of the sequence, and which will be consumed by the method). * @throws XPathException if evaluation of the SequenceIterator fails * @throws ClassCastException if any of the items returned by the SequenceIterator is not atomic */ public AtomicArray(SequenceIterator iter) throws XPathException { ArrayList list = new ArrayList(10); AtomicValue item; while ((item = (AtomicValue)iter.next()) != null) { list.add(item); } content = list; } public AtomicValue head() { return content.size() > 0 ? content.get(0) : null; } public AtomicIterator iterate() { return new ListIterator.Atomic(content); } /** * Get the n'th item in the sequence (base-zero addressing) * * @param n the index of the required item, the first item being zero * @return the n'th item if n is in range, or null otherwise */ public AtomicValue itemAt(int n) { if (n >= 0 && n < content.size()) { return content.get(n); } else { return null; } } /** * Get the length of the sequence * * @return the number of items in the sequence */ public int getLength() { return content.size(); } /** * Get a subsequence of this sequence * * @param start the index of the first item to be included in the result, counting from zero. * A negative value is taken as zero. If the value is beyond the end of the sequence, an empty * sequence is returned * @param length the number of items to be included in the result. Specify Integer.MAX_VALUE to * get the subsequence up to the end of the base sequence. If the value is negative, an empty sequence * is returned. If the value goes off the end of the sequence, the result returns items up to the end * of the sequence * @return the required subsequence */ public AtomicArray subsequence(int start, int length) { if (start < 0) { start = 0; } if (start + length > content.size()) { length = content.size() - start; } return new AtomicArray(content.subList(start, start+length)); } /** * Get the canonical lexical representation as defined in XML Schema. This is not always the same * as the result of casting to a string according to the XPath rules. * * @return the canonical lexical representation if defined in XML Schema; otherwise, the result * of casting to string according to the XPath 2.0 rules */ public CharSequence getCanonicalLexicalRepresentation() { return getStringValueCS(); } /** * Get the value of the item as a CharSequence. This is in some cases more efficient than * the version of the method that returns a String. */ public CharSequence getStringValueCS() { FastStringBuffer fsb = new FastStringBuffer(FastStringBuffer.C64); boolean first = true; for (AtomicValue av : content) { if (!first) { fsb.append(' '); } else { first = false; } fsb.append(av.getStringValueCS()); } return fsb.condense(); } public String getStringValue() { return getStringValueCS().toString(); } public boolean effectiveBooleanValue() throws XPathException { return ExpressionTool.effectiveBooleanValue(iterate()); } /** * Get a Comparable value that implements the XML Schema ordering comparison semantics for this value. * The default implementation is written to compare sequences of atomic values. * This method is overridden for AtomicValue and its subclasses. *

*

In the case of data types that are partially ordered, the returned Comparable extends the standard * semantics of the compareTo() method by returning the value {@link SequenceTool#INDETERMINATE_ORDERING} when there * is no defined order relationship between two given values.

*

*

For comparing key/keyref values, XSD 1.1 defines that a singleton list is equal to its only member. To * achieve this, this method returns the schema comparable of the singleton member if the list has length one. * This won't give the correct ordering semantics, but we rely on lists never taking part in ordering comparisons.

* * @return a Comparable that follows XML Schema comparison rules */ public Comparable getSchemaComparable() { if (content.size() == 1) { return content.get(0).getSchemaComparable(); } else { return new ValueSchemaComparable(); } } private class ValueSchemaComparable implements Comparable { public AtomicArray getValue() { return AtomicArray.this; } public int compareTo(ValueSchemaComparable obj) { UnfailingIterator iter1 = getValue().iterate(); UnfailingIterator iter2 = obj.getValue().iterate(); while (true) { AtomicValue item1 = (AtomicValue)iter1.next(); AtomicValue item2 = (AtomicValue)iter2.next(); if (item1 == null && item2 == null) { return 0; } if (item1 == null) { return -1; } else if (item2 == null) { return +1; } int c = item1.getSchemaComparable().compareTo(item2.getSchemaComparable()); if (c != 0) { return c; } } } public boolean equals(/*@NotNull*/ Object obj) { return ValueSchemaComparable.class.isAssignableFrom(obj.getClass()) && compareTo((ValueSchemaComparable) obj) == 0; } public int hashCode() { try { int hash = 0x06639662; // arbitrary seed SequenceIterator iter = getValue().iterate(); while (true) { Item item = iter.next(); if (item == null) { return hash; } if (item instanceof AtomicValue) { hash ^= ((AtomicValue) item).getSchemaComparable().hashCode(); } } } catch (XPathException e) { return 0; } } } /** * Reduce the sequence to its simplest form. If the value is an empty sequence, the result will be * EmptySequence.getInstance(). If the value is a single atomic value, the result will be an instance * of AtomicValue. If the value is a single item of any other kind, the result will be an instance * of SingletonItem. Otherwise, the result will typically be unchanged. * * @return the simplified sequence */ public GroundedValue reduce() { int len = getLength(); if (len == 0) { return EmptySequence.getInstance(); } else if (len == 1) { return itemAt(0); } else { return this; } } /** * Returns a Java iterator over the atomic sequence. * * @return an Iterator. */ public Iterator iterator() { return content.iterator(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy