All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.saxon.tree.wrapper.AbstractNodeWrapper Maven / Gradle / Ivy

There is a newer version: 12.5
Show newest version
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2015 Saxonica Limited.
// This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

package net.sf.saxon.tree.wrapper;

import net.sf.saxon.Configuration;
import net.sf.saxon.event.Receiver;
import net.sf.saxon.expr.parser.Location;
import net.sf.saxon.lib.NamespaceConstant;
import net.sf.saxon.om.*;
import net.sf.saxon.pattern.AnyNodeTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.tree.NamespaceNode;
import net.sf.saxon.tree.iter.AxisIterator;
import net.sf.saxon.tree.iter.EmptyIterator;
import net.sf.saxon.tree.iter.SingletonIterator;
import net.sf.saxon.tree.util.Navigator;
import net.sf.saxon.type.BuiltInAtomicType;
import net.sf.saxon.type.SchemaType;
import net.sf.saxon.type.Type;
import net.sf.saxon.type.Untyped;
import net.sf.saxon.value.StringValue;
import net.sf.saxon.value.UntypedAtomicValue;

/**
 * A node in the XML parse tree representing an XML element, character content, or attribute.

* This implementation of the NodeInfo interface contains common code used by many "wrapper" implementations * for external data models. * * @author Michael H. Kay */ public abstract class AbstractNodeWrapper implements NodeInfo, VirtualNode { protected TreeInfo treeInfo; public TreeInfo getTreeInfo() { return treeInfo; } /** * To implement {@link net.sf.saxon.om.Sequence}, this method returns the item itself * * @return this item */ public final NodeInfo head() { return this; } /** * To implement {@link net.sf.saxon.om.Sequence}, this method returns a singleton iterator * that delivers this item in the form of a sequence * * @return a singleton iterator that returns this item */ public SequenceIterator iterate() { return SingletonIterator.makeIterator(this); } /** * Get the node underlying this virtual node. If this is a VirtualNode the method * will automatically drill down through several layers of wrapping. * * @return The underlying node. */ public final Object getRealNode() { return getUnderlyingNode(); } /** * Get the configuration. The implementation of this method assumes that the tree is rooted * at a document node, and that the document node holds a reference to the Configuration. * If this is not the case, the method must be overridden in a subclass. */ public Configuration getConfiguration() { return getTreeInfo().getConfiguration(); } /** * Get the name pool for this node * * @return the NamePool */ public NamePool getNamePool() { return getConfiguration().getNamePool(); } /** * Get the typed value. * * @return the typed value. This will either be a single AtomicValue or a value whose items are * atomic values. * @since 8.5 - signature changed in 9.5 */ public AtomicSequence atomize() { switch (getNodeKind()) { case Type.COMMENT: case Type.PROCESSING_INSTRUCTION: return new StringValue(getStringValueCS()); default: return new UntypedAtomicValue(getStringValueCS()); } } /** * Get the type annotation of this node, if any. The type annotation is represented as * SchemaType object. *

*

Types derived from a DTD are not reflected in the result of this method.

* * @return For element and attribute nodes: the type annotation derived from schema * validation (defaulting to xs:untyped and xs:untypedAtomic in the absence of schema * validation). For comments, text nodes, processing instructions, and namespaces: null. * For document nodes, either xs:untyped if the document has not been validated, or * xs:anyType if it has. * @since 9.4 */ public SchemaType getSchemaType() { if (getNodeKind() == Type.ATTRIBUTE) { return BuiltInAtomicType.UNTYPED_ATOMIC; } else { return Untyped.getInstance(); } } /** * Determine whether this is the same node as another node.
* Note: a.isSameNode(b) if and only if generateId(a)==generateId(b) * * @return true if this Node object and the supplied Node object represent the * same node in the tree. */ public boolean isSameNodeInfo(NodeInfo other) { if (!(other instanceof AbstractNodeWrapper)) { return false; } AbstractNodeWrapper ow = (AbstractNodeWrapper) other; return getUnderlyingNode().equals(ow.getUnderlyingNode()); } /** * The equals() method compares nodes for identity. It is defined to give the same result * as isSameNodeInfo(). * * @param other the node to be compared with this node * @return true if this NodeInfo object and the supplied NodeInfo object represent * the same node in the tree. * @since 8.7 Previously, the effect of the equals() method was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason. * The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap. */ public boolean equals(Object other) { return other instanceof NodeInfo && isSameNodeInfo((NodeInfo) other); } /** * The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal * (represent the same node) then they must have the same hashCode() * * @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. */ public int hashCode() { return getUnderlyingNode().hashCode(); } /** * Get the System ID for the node. * * @return the System Identifier of the entity in the source document containing the node, * or null if not known. Note this is not the same as the base URI: the base URI can be * modified by xml:base, but the system ID cannot. */ public String getSystemId() { if (treeInfo instanceof GenericTreeInfo) { return ((GenericTreeInfo) treeInfo).getSystemId(); } else { throw new UnsupportedOperationException(); // must implement in subclass } } /** * Set the system ID. Required because NodeInfo implements the JAXP Source interface * @param uri the system ID. */ public void setSystemId(String uri) { if (treeInfo instanceof GenericTreeInfo) { ((GenericTreeInfo) treeInfo).setSystemId(uri); } else { throw new UnsupportedOperationException(); // must implement in subclass } } /** * Get the Public ID of the entity containing the node. * * @return null (always) * @since 9.7 */ public String getPublicId() { return null; } /** * Get the Base URI for the node, that is, the URI used for resolving a relative URI contained * in the node. * * @return the base URI of the node, taking into account xml:base attributes if present */ public String getBaseURI() { if (getNodeKind() == Type.NAMESPACE) { return null; } NodeInfo n = this; if (getNodeKind() != Type.ELEMENT) { n = getParent(); } // Look for an xml:base attribute while (n != null) { String xmlbase = n.getAttributeValue(NamespaceConstant.XML, "base"); if (xmlbase != null) { return xmlbase; } n = n.getParent(); } // if not found, return the base URI of the document node return getRoot().getSystemId(); } /** * Get line number * * @return the line number of the node in its original source document; or -1 if not available. * Always returns -1 in this implementation. */ public int getLineNumber() { return -1; } /** * Get column number * * @return the column number of the node in its original source document; or -1 if not available */ public int getColumnNumber() { return -1; } /** * Get an immutable copy of this Location object. By default Location objects may be mutable, so they * should not be saved for later use. The result of this operation holds the same location information, * but in an immutable form. */ public Location saveLocation() { return this; } /** * Determine the relative position of this node and another node, in document order, * distinguishing whether the first node is a preceding, following, descendant, ancestor, * or the same node as the second. *

* The other node must always be in the same tree; the effect of calling this method * when the two nodes are in different trees is undefined. If either node is a namespace * or attribute node, the method should throw UnsupportedOperationException. * * @param other The other node, whose position is to be compared with this * node * @return {@link net.sf.saxon.om.AxisInfo#PRECEDING} if this node is on the preceding axis of the other node; * {@link net.sf.saxon.om.AxisInfo#FOLLOWING} if it is on the following axis; {@link net.sf.saxon.om.AxisInfo#ANCESTOR} if the first node is an * ancestor of the second; {@link net.sf.saxon.om.AxisInfo#DESCENDANT} if the first is a descendant of the second; * {@link net.sf.saxon.om.AxisInfo#SELF} if they are the same node. * @throws UnsupportedOperationException if either node is an attribute or namespace * @since 9.5 */ public int comparePosition(NodeInfo other) { return Navigator.comparePosition(this, other); } /** * Return the string value of the node. The interpretation of this depends on the type * of node. For an element it is the accumulated character content of the element, * including descendant elements. * * @return the string value of the node */ public String getStringValue() { return getStringValueCS().toString(); } /** * Get name code. The name code is a coded form of the node name: two nodes * with the same name code have the same namespace URI, the same local name, * and the same prefix. By masking the name code with &0xfffff, you get a * fingerprint: two nodes with the same fingerprint have the same local name * and namespace URI. * * @see net.sf.saxon.om.NamePool#allocate allocate */ private int getNameCode() { switch (getNodeKind()) { case Type.ELEMENT: case Type.ATTRIBUTE: case Type.PROCESSING_INSTRUCTION: case Type.NAMESPACE: return getNamePool().allocate(getPrefix(), getURI(), getLocalPart()); default: return -1; } } /** * Get the display name of this node. For elements and attributes this is * [prefix:]localname. For unnamed nodes, it is an empty string. * * @return The display name of this node. For a node with no name, return an * empty string. */ public String getDisplayName() { String prefix = getPrefix(); String local = getLocalPart(); if (prefix.isEmpty()) { return local; } else { return prefix + ":" + local; } } /** * Get the string value of a given attribute of this node. *

*

The default implementation is suitable for nodes other than elements.

* * @param uri the namespace URI of the attribute name. Supply the empty string for an attribute * that is in no namespace * @param local the local part of the attribute name. * @return the attribute value if it exists, or null if it does not exist. Always returns null * if this node is not an element. * @since 9.4 */ public String getAttributeValue(String uri, String local) { return null; } /** * Return an iteration over the nodes reached by the given axis from this node * * @param axisNumber the axis to be used * @return a SequenceIterator that scans the nodes reached by the axis in turn. */ public AxisIterator iterateAxis(byte axisNumber) { return iterateAxis(axisNumber, AnyNodeTest.getInstance()); } /** * Return an iteration over the nodes reached by the given axis from this node. *

*

This superclass provides implementations of the ancestor, ancestor-or-self, * following, namespace, parent, preceding, self, and preceding-or-ancestor axes. * The other axes are implemented by calling methods iterateAttributes(), * iterateChildren(), iterateDescendants(), and iterateSiblings(), which must * be provided in a subclass.

* * @param axisNumber the axis to be used * @param nodeTest A pattern to be matched by the returned nodes * @return a SequenceIterator that scans the nodes reached by the axis in turn. */ public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) { int nodeKind = getNodeKind(); switch (axisNumber) { case AxisInfo.ANCESTOR: if (nodeKind == Type.DOCUMENT) { return EmptyIterator.OfNodes.THE_INSTANCE; } return new Navigator.AxisFilter( new Navigator.AncestorEnumeration(this, false), nodeTest); case AxisInfo.ANCESTOR_OR_SELF: if (nodeKind == Type.DOCUMENT) { return Navigator.filteredSingleton(this, nodeTest); } return new Navigator.AxisFilter( new Navigator.AncestorEnumeration(this, true), nodeTest); case AxisInfo.ATTRIBUTE: if (nodeKind != Type.ELEMENT) { return EmptyIterator.OfNodes.THE_INSTANCE; } return iterateAttributes(nodeTest); case AxisInfo.CHILD: if (nodeKind == Type.ELEMENT || nodeKind == Type.DOCUMENT) { return iterateChildren(nodeTest); } else { return EmptyIterator.OfNodes.THE_INSTANCE; } case AxisInfo.DESCENDANT: if (nodeKind == Type.ELEMENT || nodeKind == Type.DOCUMENT) { return iterateDescendants(nodeTest, false); } else { return EmptyIterator.OfNodes.THE_INSTANCE; } case AxisInfo.DESCENDANT_OR_SELF: if (nodeKind == Type.ELEMENT || nodeKind == Type.DOCUMENT) { return iterateDescendants(nodeTest, true); } else { return Navigator.filteredSingleton(this, nodeTest); } case AxisInfo.FOLLOWING: return new Navigator.AxisFilter( new Navigator.FollowingEnumeration(this), nodeTest); case AxisInfo.FOLLOWING_SIBLING: switch (nodeKind) { case Type.DOCUMENT: case Type.ATTRIBUTE: case Type.NAMESPACE: return EmptyIterator.OfNodes.THE_INSTANCE; default: return iterateSiblings(nodeTest, true); } case AxisInfo.NAMESPACE: if (nodeKind != Type.ELEMENT) { return EmptyIterator.OfNodes.THE_INSTANCE; } return NamespaceNode.makeIterator(this, nodeTest); case AxisInfo.PARENT: return Navigator.filteredSingleton(getParent(), nodeTest); case AxisInfo.PRECEDING: return new Navigator.AxisFilter( new Navigator.PrecedingEnumeration(this, false), nodeTest); case AxisInfo.PRECEDING_SIBLING: switch (nodeKind) { case Type.DOCUMENT: case Type.ATTRIBUTE: case Type.NAMESPACE: return EmptyIterator.OfNodes.THE_INSTANCE; default: return iterateSiblings(nodeTest, false); } case AxisInfo.SELF: return Navigator.filteredSingleton(this, nodeTest); case AxisInfo.PRECEDING_OR_ANCESTOR: return new Navigator.AxisFilter( new Navigator.PrecedingEnumeration(this, true), nodeTest); default: throw new IllegalArgumentException("Unknown axis number " + axisNumber); } } /** * Return an iterator over the attributes of this element node. * This method is only called after checking that the node is an element. * * @param nodeTest a test that the returned attributes must satisfy * @return an iterator over the attribute nodes. The order of the result, * although arbitrary, must be consistent with document order. */ protected abstract AxisIterator iterateAttributes(NodeTest nodeTest); /** * Return an iterator over the children of this node. * This method is only called after checking that the node is an element or document. * * @param nodeTest a test that the returned attributes must satisfy * @return an iterator over the child nodes, in document order. */ protected abstract AxisIterator iterateChildren(NodeTest nodeTest); /** * Return an iterator over the siblings of this node. * This method is only called after checking that the node is an element, text, comment, or PI node. * * @param nodeTest a test that the returned siblings must satisfy * @param forwards true for following siblings, false for preceding siblings * @return an iterator over the sibling nodes, in axis order. */ protected abstract AxisIterator iterateSiblings(NodeTest nodeTest, boolean forwards); /** * Return an iterator over the descendants of this node. * This method is only called after checking that the node is an element or document node. * * @param nodeTest a test that the returned descendants must satisfy * @param includeSelf true if this node is to be included in the result * @return an iterator over the sibling nodes, in axis order. */ protected abstract AxisIterator iterateDescendants(NodeTest nodeTest, boolean includeSelf); // { // if (nodeTest == AnyNodeTest.getInstance()) { // return new Navigator.DescendantEnumeration(this, includeSelf, true); // } else { // return new Navigator.AxisFilter( // new Navigator.DescendantEnumeration(this, includeSelf, true), // nodeTest); // } // } /** * Get all namespace declarations and undeclarations defined on this element. *

*

This method is intended primarily for internal use. User applications needing * information about the namespace context of a node should use iterateAxis(Axis.NAMESPACE). * (However, not all implementations support the namespace axis, whereas all implementations are * required to support this method.)

*

*

This implementation of the method is suitable for all nodes other than elements; it returns * an empty array.

* * @param buffer If this is non-null, and the result array fits in this buffer, then the result * may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap. * @return An array of integers representing the namespace declarations and undeclarations present on * this element. For a node other than an element, return null. Otherwise, the returned array is a * sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The * top half word of each namespace code represents the prefix, the bottom half represents the URI. * If the bottom half is zero, then this is a namespace undeclaration rather than a declaration. * The XML namespace is never included in the list. If the supplied array is larger than required, * then the first unused entry will be set to -1. *

* For a node other than an element, the method returns null.

*/ public NamespaceBinding[] getDeclaredNamespaces(NamespaceBinding[] buffer) { return new NamespaceBinding[0]; } /** * Get the root node - always a document node with this tree implementation * * @return the NodeInfo representing the containing document */ public NodeInfo getRoot() { NodeInfo p = this; while (true) { NodeInfo q = p.getParent(); if (q==null) { return p; } p = q; } } /** * Determine whether the node has any children. * This implementation calls iterateAxis, so the subclass implementation of iterateAxis * must avoid calling this method. */ public boolean hasChildNodes() { switch (getNodeKind()) { case Type.DOCUMENT: case Type.ELEMENT: return iterateAxis(AxisInfo.CHILD).next() != null; default: return false; } } /** * Copy this node to a given outputter (deep copy) */ public void copy(Receiver out, int copyOptions, Location locationId) throws XPathException { Navigator.copy(this, out, copyOptions, locationId); } /** * Determine whether this node has the is-id property * * @return true if the node is an ID. This implementation always returns false */ public boolean isId() { return false; } /** * Determine whether this node has the is-idref property * * @return true if the node is an IDREF or IDREFS element or attribute. * This implementation always returns false */ public boolean isIdref() { return false; } /** * Determine whether the node has the is-nilled property * * @return true if the node has the is-nilled property. * This implementation always returns false */ public boolean isNilled() { return false; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy