All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.tweety.arg.aspic.reasoner.RandomAspicReasoner Maven / Gradle / Ivy

There is a newer version: 1.17
Show newest version
/*
 *  This file is part of "TweetyProject", a collection of Java libraries for
 *  logical aspects of artificial intelligence and knowledge representation.
 *
 *  TweetyProject is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License version 3 as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program. If not, see .
 *
 *  Copyright 2018 The TweetyProject Team 
 */
package net.sf.tweety.arg.aspic.reasoner;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;

import net.sf.tweety.arg.aspic.semantics.AspicAttack;
import net.sf.tweety.arg.aspic.syntax.AspicArgument;
import net.sf.tweety.arg.aspic.syntax.AspicArgumentationTheory;
import net.sf.tweety.arg.aspic.syntax.InferenceRule;
import net.sf.tweety.arg.dung.reasoner.AbstractExtensionReasoner;
import net.sf.tweety.arg.dung.syntax.DungTheory;
import net.sf.tweety.commons.Formula;
import net.sf.tweety.logics.commons.syntax.interfaces.Invertable;

/**
 * This class implements an approximate reasoner for ASPIC+ that randomly
 * samples arguments.
 * 
 * @author Matthias Thimm
 *
 * @param  The type of formulas.
 */
public class RandomAspicReasoner extends AbstractAspicReasoner {

	/**
	 * Random number generator
	 */
	private Random rand;
	
	/**
	 * The maximal number of arguments constructed by this reasoner.
	 */
	private int maxArguments;
	
	/**
	 * The maximal number of duplicates tolerated before this reasoner 
	 * cancels looking for more arguments (even if maxArguments is
	 * not yet reached).
	 */
	private int maxDuplicates;
	
	/**
	 * Creates a new instance.
	 * @param aafReasoner Underlying reasoner for AAFs.
	 * @param maxArguments  The maximal number of arguments constructed by this reasoner.
	 * @param maxDuplicates The maximal number of duplicates tolerated before this reasoner 
	 * cancels looking for more arguments (even if maxArguments is
	 * not yet reached).
	 */
	public RandomAspicReasoner(AbstractExtensionReasoner aafReasoner, int maxArguments, int maxDuplicates) {
		super(aafReasoner);
		this.maxArguments = maxArguments;
		this.maxDuplicates = maxDuplicates;
		this.rand = new Random();
	}

	/* (non-Javadoc)
	 * @see net.sf.tweety.arg.aspic.AbstractAspicReasoner#getDungTheory(net.sf.tweety.arg.aspic.AspicArgumentationTheory, net.sf.tweety.commons.Formula)
	 */
	@Override
	protected DungTheory getDungTheory(AspicArgumentationTheory aat, Formula query) {
		//determine part of the theory needed for the query
		AspicArgumentationTheory module = new AspicArgumentationTheory(aat.getRuleFormulaGenerator());
		module.addAll(aat.getSyntacticModule(query));
		Collection> args = new HashSet>();
		DungTheory aaf = new DungTheory();
		int duplicates = 0;
		// prepare rules by indexing them by the head
		Map>> rules = new HashMap<>();
		for(InferenceRule rule: aat) {
			if(!rules.containsKey(rule.getConclusion()))
				rules.put(rule.getConclusion(), new ArrayList>());
			rules.get(rule.getConclusion()).add(rule);
		}
		// sample arguments
		for(int i = 0; i < this.maxArguments; i++) {
			if(!args.add(this.sampleArgument(rules)))
				duplicates++;			
			if(duplicates > this.maxDuplicates)
				break;
		}
		aaf.addAll(args);
		aaf.addAllAttacks(AspicAttack.determineAttackRelations(args, aat.getOrder(), aat.getRuleFormulaGenerator()));
		return aaf;
	}

	/**
	 * Samples a single ASPIC argument via a random search.
	 * @param rules some rules 
	 * @return some ASPIC argument
	 */
	private AspicArgument sampleArgument(Map>> rules){
		AspicArgument arg = null;
		do {
			T conclusion = new ArrayList(rules.keySet()).get(this.rand.nextInt(rules.keySet().size()));
			Set conclusions = new HashSet();
			conclusions.add(conclusion);
			arg = this.sampleArgument(rules,conclusion,conclusions);
		}while(arg==null);
		return arg;
	}
	
	/**
	 * Samples a single ASPIC argument for the given conclusion via a random search.
	 * 
	 * @param rules some rules 
	 * @param conclusion some conclusion
	 * @param conclusions the conclusions accumulated so far (from the top)
	 * @return some ASPIC argument
	 */
	private AspicArgument sampleArgument(Map>> rules, T conclusion, Set conclusions){
		if(!rules.containsKey(conclusion))
			return null;
		// candidate rules for the top rule
		List> candidates = new ArrayList>();		
		for(InferenceRule rule: rules.get(conclusion)) {
			Set premise = new HashSet<>(rule.getPremise());
			premise.retainAll(conclusions);
			if(premise.isEmpty())
				candidates.add(rule);			
		}
		if(candidates.isEmpty())
			return null;
		AspicArgument arg = new AspicArgument(candidates.get(this.rand.nextInt(candidates.size())));
		for(T prem: arg.getTopRule().getPremise()) {
			Set newConclusions = new HashSet(conclusions);
			newConclusions.add(prem);
			AspicArgument sub = this.sampleArgument(rules,prem,newConclusions);
			if(sub == null)
				return null;
			arg.addDirectSub(sub);
		}		
		return arg;
	}	
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy