
net.sf.tweety.math.examples.GradientDescentSolverEx Maven / Gradle / Ivy
/*
* This file is part of "TweetyProject", a collection of Java libraries for
* logical aspects of artificial intelligence and knowledge representation.
*
* TweetyProject is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
* Copyright 2020 The TweetyProject Team
*/
package net.sf.tweety.math.examples;
import java.io.IOException;
import java.util.*;
import net.sf.tweety.commons.ParserException;
import net.sf.tweety.math.*;
import net.sf.tweety.math.opt.problem.ConstraintSatisfactionProblem;
import net.sf.tweety.math.opt.problem.OptimizationProblem;
import net.sf.tweety.math.opt.solver.BfgsSolver;
import net.sf.tweety.math.term.FloatConstant;
import net.sf.tweety.math.term.FloatVariable;
import net.sf.tweety.math.term.IntegerConstant;
import net.sf.tweety.math.term.Power;
import net.sf.tweety.math.term.Sum;
import net.sf.tweety.math.term.Term;
import net.sf.tweety.math.term.Variable;
/**
* This class implements an example for the Gradient Descent Solver
* @author Sebastian Franke
*/
public class GradientDescentSolverEx {
public static ConstraintSatisfactionProblem createConstraintSatProb1() {
FloatVariable m1 = new FloatVariable("Machine 1");
FloatVariable m2 = new FloatVariable("Machine 2");
//Target function = (m1+1)^2+m2^2
Term opt = new Sum(new Power(new Sum(m1,new FloatConstant(1)), new IntegerConstant(2)), new Power(m2, new IntegerConstant(2)));
OptimizationProblem prob = new OptimizationProblem(0);
((OptimizationProblem)prob).setTargetFunction(opt);
return prob;
}
public static void main(String[] args) throws ParserException, IOException, GeneralMathException{
//Create toy problem
ConstraintSatisfactionProblem prob = createConstraintSatProb1();
Set constr = prob.getVariables();
//Create starting point; all variables start at 0
Map startingPoint = new HashMap();
for(Variable x : constr) {
startingPoint.put(x, new IntegerConstant(0));
}
//solve via Gradient Descent
BfgsSolver solver = new BfgsSolver(startingPoint);
Map solution = solver.solve(prob);
System.out.println(solution.toString());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy