All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.emory.mathcs.csparsej.tdcomplex.DZcs_dmperm Maven / Gradle / Ivy

The newest version!
/*
 * CXSparse: a Concise Sparse matrix package.
 * Copyright (C) 2006-2011, Timothy A. Davis.
 * Copyright (C) 2011-2012, Richard W. Lincoln.
 * http://www.cise.ufl.edu/research/sparse/CXSparse
 *
 * -------------------------------------------------------------------------
 *
 * CXSparseJ is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * CXSparseJ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this Module; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
 *
 */

package edu.emory.mathcs.csparsej.tdcomplex ;

import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcs ;
import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcsd ;

import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_transpose.cs_transpose ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.CS_CSC ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.cs_dalloc ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.cs_ddone ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_maxtrans.cs_maxtrans ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_pinv.cs_pinv ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_permute.cs_permute ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_fkeep.cs_fkeep ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_scc.cs_scc ;

/**
 * Dulmage-Mendelsohn decomposition.
 *
 * @author Piotr Wendykier ([email protected])
 * @author Richard Lincoln ([email protected])
 *
 */
public class DZcs_dmperm {

	/**
	 * breadth-first search for coarse decomposition (C0,C1,R1 or R0,R3,C3)
	 */
	private static boolean cs_bfs(DZcs A, int n, int[] wi, int[] wj, int[] queue,
		int[] imatch, int imatch_offset, int[] jmatch, int jmatch_offset, int mark)
	{
		int Ap[], Ai[], head = 0, tail = 0, j, i, p, j2 ;
		DZcs C ;
		for (j = 0 ; j < n ; j++)		/* place all unmatched nodes in queue */
		{
			if (imatch [imatch_offset + j] >= 0)
				continue;		/* skip j if matched */
			wj [j] = 0 ;			/* j in set C0 (R0 if transpose) */
			queue [tail++] = j ;		/* place unmatched col j in queue */
		}
		if (tail == 0) return (true) ;		/* quick return if no unmatched nodes */
		C = (mark == 1) ? A : cs_transpose (A, false) ;
		if (C == null) return (false) ;		/* bfs of C=A' to find R3,C3 from R0 */
		Ap = C.p ; Ai = C.i ;
		while (head < tail)			/* while queue is not empty */
		{
			j = queue [head++] ;		/* get the head of the queue */
			for (p = Ap [j] ; p < Ap [j + 1] ; p++)
			{
				i = Ai [p] ;
				if (wi [i] >= 0)
					continue;	/* skip if i is marked */
				wi [i] = mark ;		/* i in set R1 (C3 if transpose) */
				j2 = jmatch [jmatch_offset + i] ; /* traverse alternating path to j2 */
				if (wj [j2] >= 0)
					continue;	/* skip j2 if it is marked */
				wj [j2] = mark ;	/* j2 in set C1 (R3 if transpose) */
				queue [tail++] = j2 ;	/* add j2 to queue */
			}
		}
		if (mark != 1) C = null ;		/* free A' if it was created */
		return (true) ;
	}

	/**
	 * collect matched rows and columns into p and q
	 */
	private static void cs_matched(int n, int[] wj, int[] imatch, int imatch_offset,
		int[] p, int[] q, int[] cc, int[] rr, int set, int mark)
	{
		int kc = cc [set], j ;
		int kr = rr [set - 1] ;
		for (j = 0 ; j < n ; j++)
		{
			if (wj [j] != mark)
				continue ;		/* skip if j is not in C set */
			p [kr++] = imatch [imatch_offset + j] ;
			q [kc++] = j ;
		}
		cc [set + 1] = kc ;
		rr [set] = kr ;
	}

	/**
	 * collect unmatched rows into the permutation vector p
	 */
	private static void cs_unmatched(int m, int[] wi, int[] p, int[] rr, int set)
	{
		int i, kr = rr [set] ;
		for (i = 0 ; i < m ; i++) if (wi [i] == 0) p [kr++] = i ;
		rr [set + 1] = kr ;
	}

	/**
	 * return 1 if row i is in R2
	 */
	private static class Cs_rprune implements DZcs_ifkeep
	{

		public boolean fkeep(int i, int j, double [] aij, Object other)
		{
			int [] rr = (int[]) other ;
			return (i >= rr [1] && i < rr [2]) ;
		}

	}

	/**
	 * Compute coarse and then fine Dulmage-Mendelsohn decomposition. seed
	 * optionally selects a randomized algorithm.
	 *
	 * @param A
	 *            column-compressed matrix
	 * @param seed
	 *            0: natural, -1: reverse, random order otherwise
	 * @return Dulmage-Mendelsohn analysis, null on error
	 */
	public static DZcsd cs_dmperm(DZcs A, int seed) {
		int m, n, i, j, k, cnz, nc, jmatch[], imatch[], wi[], wj[], pinv[], Cp[], Ci[],
			ps[], rs[], nb1, nb2, p[], q[], cc[], rr[], r[], s[] ;
		boolean ok ;
		DZcs C ;
		DZcsd D, scc ;
		/* --- Maximum matching ------------------------------------------------- */
		if (!CS_CSC(A)) return (null) ;		/* check inputs */
		m = A.m ; n = A.n ;
		D = cs_dalloc (m, n) ;			/* allocate result */
		if (D == null) return (null) ;
		p = D.p ; q = D.q ; r = D.r ; s = D.s ; cc = D.cc ; rr = D.rr ;
		jmatch = cs_maxtrans (A, seed);		/* max transversal */
		imatch = jmatch ;			/* imatch = inverse of jmatch */
		int imatch_offset = m ;
		if (jmatch == null) return (cs_ddone (D, null, jmatch, false)) ;
		/* --- Coarse decomposition --------------------------------------------- */
		wi = r ; wj = s ;			/* use r and s as workspace */
		for (j = 0 ; j < n ; j++) wj [j] = -1 ;	/* unmark all cols for bfs */
		for (i = 0 ; i < m ; i++) wi [i] = -1 ;	/* unmark all rows for bfs */
		cs_bfs (A, n, wi, wj, q, imatch, imatch_offset, jmatch, 0, 1) ;  /* find C1, R1 from C0*/
		ok = cs_bfs (A, m, wj, wi, p, jmatch, 0, imatch, imatch_offset, 3) ;  /* find R3, C3 from R0*/
		if (!ok) return (cs_ddone (D, null, jmatch, false)) ;
		cs_unmatched (n, wj, q, cc, 0) ;	/* unmatched set C0 */
		cs_matched (n, wj, imatch, imatch_offset, p, q, cc, rr, 1, 1) ; /* set R1 and C1 */
		cs_matched (n, wj, imatch, imatch_offset, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */
		cs_matched (n, wj, imatch, imatch_offset, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */
		cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set R0 */
		jmatch = null ;
		/* --- Fine decomposition ----------------------------------------------- */
		pinv = cs_pinv (p, m) ;			/* pinv=p' */
		if (pinv == null) return (cs_ddone (D, null, null, false)) ;
		C = cs_permute (A, pinv, q, false) ;	/* C=A(p,q) (it will hold A(R2,C2)) */
		pinv = null ;
		if (C == null) return (cs_ddone (D, null, null, false)) ;
		Cp = C.p ;
		nc = cc [3] - cc [2] ;			/* delete cols C0, C1, and C3 from C */
		if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j - cc [2]] = Cp [j] ;
		C.n = nc ;
		if (rr [2] - rr [1] < m)		/* delete rows R0, R1, and R3 from C */
		{
			cs_fkeep (C, new Cs_rprune(), rr) ;
			cnz = Cp [nc] ;
			Ci = C.i ;
			if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ;
		}
		C.m = nc;
		scc = cs_scc (C) ;			/* find strongly connected components of C*/
		if (scc == null) return (cs_ddone (D, C, null, false)) ;
		/* --- Combine coarse and fine decompositions --------------------------- */
		ps = scc.p ;				/* C(ps,ps) is the permuted matrix */
		rs = scc.r ;				/* kth block is rs[k]..rs[k+1]-1 */
		nb1 = scc.nb ;				/* # of blocks of A(R2,C2) */
		for (k = 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ;
		for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ;
		for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ;
		for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ;
		nb2 = 0 ;				/* create the fine block partitions */
		r[0] = s[0] = 0 ;
		if (cc [2] > 0) nb2++ ;			/* leading coarse block A (R1, [C0 C1]) */
		for (k = 0 ; k < nb1 ; k++)		/* coarse block A (R2,C2) */
		{
			r [nb2] = rs [k] + rr [1] ;	/* A (R2,C2) splits into nb1 fine blocks */
			s [nb2] = rs [k] + cc [2] ;
			nb2++ ;
		}
		if (rr[2] < m)
		{
			r [nb2] = rr [2] ;		/* trailing coarse block A ([R3 R0], C3) */
			s [nb2] = cc [3] ;
			nb2++ ;
		}
		r [nb2] = m ;
		s [nb2] = n ;
		D.nb = nb2 ;
		scc = null ;
		return (cs_ddone (D, C, null, true)) ;
	}

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy