![JAR search and dependency download from the Maven repository](/logo.png)
edu.emory.mathcs.csparsej.tdcomplex.DZcs_qr Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of csparsej Show documentation
Show all versions of csparsej Show documentation
CSparseJ is a Java port of CSparse: a Concise Sparse matrix package.
The newest version!
/*
* CXSparse: a Concise Sparse matrix package.
* Copyright (C) 2006-2011, Timothy A. Davis.
* Copyright (C) 2011-2012, Richard W. Lincoln.
* http://www.cise.ufl.edu/research/sparse/CXSparse
*
* -------------------------------------------------------------------------
*
* CXSparseJ is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* CXSparseJ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this Module; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
*
*/
package edu.emory.mathcs.csparsej.tdcomplex;
import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcsa;
import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcs;
import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcsn;
import edu.emory.mathcs.csparsej.tdcomplex.DZcs_common.DZcss;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.CS_CSC ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.cs_spalloc ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_util.cs_ndone ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_complex.cs_czero ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_happly.cs_happly ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_scatter.cs_scatter ;
import static edu.emory.mathcs.csparsej.tdcomplex.DZcs_house.cs_house ;
/**
* Sparse QR factorization.
*
* @author Piotr Wendykier ([email protected])
* @author Richard Lincoln ([email protected])
*
*/
public class DZcs_qr {
/**
* Sparse QR factorization of an m-by-n matrix A, A= Q*R
*
* @param A
* column-compressed matrix
* @param S
* symbolic QR analysis
* @return numeric QR factorization, null on error
*/
public static DZcsn cs_qr(DZcs A, DZcss S)
{
DZcsa Rx = new DZcsa(), Vx = new DZcsa(), Ax = new DZcsa(), x ;
double Beta[] ;
int i, k, p, n, vnz, p1, top, m2, len, col, rnz, s[], leftmost[], Ap[], Ai[],
parent[], Rp[], Ri[], Vp[], Vi[], w[], pinv[], q[] ;
DZcs R, V ;
DZcsn N ;
if (!CS_CSC (A) || S == null) return (null) ;
n = A.n ; Ap = A.p ; Ai = A.i ; Ax.x = A.x ;
q = S.q ; parent = S.parent ; pinv = S.pinv ; m2 = S.m2 ;
vnz = S.lnz ; rnz = S.unz ; leftmost = S.leftmost ;
w = new int [m2] ; /* get int workspace */
x = new DZcsa (m2) ; /* get double workspace */
N = new DZcsn () ; /* allocate result */
s = new int [n] ; /* get int workspace, s is size n */
//for (k = 0 ; k < m2 ; k++) x.set(k, cs_czero()) ; /* clear workspace x */
N.L = V = cs_spalloc(m2, n, vnz, true, false) ; /* allocate result V */
N.U = R = cs_spalloc(m2, n, rnz, true, false) ; /* allocate result R */
N.B = Beta = new double [n] ; /* allocate result Beta */
if (R == null || V == null || Beta == null) return (cs_ndone (N, null, w, x, false)) ;
Rp = R.p ; Ri = R.i ; Rx.x = R.x ;
Vp = V.p ; Vi = V.i ; Vx.x = V.x ;
for (i = 0 ; i < m2 ; i++) w [i] = -1 ; /* clear w, to mark nodes */
rnz = 0 ; vnz = 0 ;
for (k = 0 ; k < n ; k++) /* compute V and R */
{
Rp [k] = rnz ; /* R(:,k) starts here */
Vp [k] = p1 = vnz ; /* V(:,k) starts here */
w [k] = k ; /* add V(k,k) to pattern of V */
Vi [vnz++] = k ;
top = n ;
col = q != null ? q [k] : k ;
for (p = Ap [col] ; p < Ap [col+1] ; p++) /* find R(:,k) pattern */
{
i = leftmost [Ai [p]] ; /* i = min(find(A(i,q))) */
for (len = 0 ; w [i] != k ; i = parent [i]) /* traverse up to k */
{
s [len++] = i ;
w [i] = k ;
}
while (len > 0)
s [--top] = s [--len] ; /* push path on stack */
i = pinv [Ai [p]] ; /* i = permuted row of A(:,col) */
x.set(i, Ax.real(p), Ax.imag(p)) ; /* x (i) = A(:,col) */
if (i > k && w [i] < k) /* pattern of V(:,k) = x (k+1:m) */
{
Vi [vnz++] = i ; /* add i to pattern of V(:,k) */
w [i] = k ;
}
}
for (p = top ; p < n ; p++) /* for each i in pattern of R(:,k) */
{
i = s [p] ; /* R(i,k) is nonzero */
cs_happly (V, i, Beta [i], x) ; /* apply (V(i),Beta(i)) to x */
Ri [rnz] = i ; /* R(i,k) = x(i) */
Rx.set(rnz++, x.real(i), x.imag(i)) ;
x.set(i, 0.0, 0.0) ;
if (parent [i] == k)
vnz = cs_scatter (V, i, cs_czero(), w, null, k, V, vnz) ;
}
for (p = p1 ; p < vnz ; p++) /* gather V(:,k) = x */
{
Vx.set(p, x.real(Vi [p]), x.imag(Vi [p])) ;
x.set(Vi [p], 0.0, 0.0) ;
}
Ri [rnz] = k ; /* R(k,k) = norm (x) */
double[] beta = new double[] {Beta [k]} ;
Rx.set(rnz++, cs_house(Vx, p1, beta, vnz - p1)) ; /* [v,beta]=house(x) */
Beta [k] = beta [0] ;
}
Rp [n] = rnz ; /* finalize R */
Vp [n] = vnz ; /* finalize V */
return (N) ;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy