All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jmol.adapter.readers.quantum.SlaterReader Maven / Gradle / Ivy

There is a newer version: 14.31.10
Show newest version
/* $RCSfile$
 * $Author: egonw $
 * $Date: 2006-03-18 15:59:33 -0600 (Sat, 18 Mar 2006) $
 * $Revision: 4652 $
 *
 * Copyright (C) 2003-2005  Miguel, Jmol Development, www.jmol.org
 *
 * Contact: [email protected]
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 */
package org.jmol.adapter.readers.quantum;


import org.jmol.quantum.SlaterData;
import org.jmol.util.Logger;

import javajs.util.Lst;
import java.util.Arrays;
import java.util.Comparator;

import java.util.Map;

/**
 * 
 * @author hansonr 
 */
abstract class SlaterReader extends BasisFunctionReader {

  /*
   * -- this abstract superclass is cartesian bases only (s, p, d, f)
   * 
   * -- MopacReader overrides this for spherical bases (s, p, d)
   * 
   */

  protected final Lst slaters = new  Lst();
  protected SlaterData[] slaterArray;
  
  /**
   * 
   * We build two data structures for each slater: 
   * 
   * int[] slaterInfo[] = {iatom, a, b, c, d}
   * float[] slaterData[] = {zeta, coef}
   * 
   * where
   * 
   *  psi = (coef)(x^a)(y^b)(z^c)(r^d)exp(-zeta*r)
   * 
   *  Mopac: a == -2 ==> z^2 ==> (coef)(2z^2-x^2-y^2)(r^d)exp(-zeta*r)
   *    and: b == -2 ==> (coef)(x^2-y^2)(r^d)exp(-zeta*r)
   *    
   * @param iAtom
   * @param a
   * @param b
   * @param c
   * @param d
   * @param zeta
   * @param coef
   */
  protected final void addSlater(int iAtom, int a, int b, int c, int d, 
                        double zeta, float coef) {
    //System.out.println ("SlaterReader " + slaters.size() + ": " + iAtom + " " + a + " " + b +  " " + c + " " + d + " " + zeta + " " + coef);
    slaters.addLast(new SlaterData(iAtom, a, b, c, d, zeta, coef));
  }

  protected void addSlater(SlaterData sd, int n) {
    sd.index = n;
    slaters.addLast(sd);    
  }

  /**
   * after the vectors intinfo and floatinfo are completed, we
   * 
   * @param doScale
   * @param doSort TODO
   */
  protected final void setSlaters(boolean doScale, boolean doSort) {
    if (slaterArray == null) {
      int nSlaters = slaters.size();
      slaterArray = new SlaterData[nSlaters];
      for (int i = 0; i < slaterArray.length; i++) 
        slaterArray[i] = slaters.get(i);
    }
    if (doScale)
      for (int i = 0; i < slaterArray.length; i++) {
        SlaterData sd = slaterArray[i];
        sd.coef *= scaleSlater(sd.x, sd.y, sd.z, sd.r, sd.zeta);
        if (debugging) {
          Logger.debug("SlaterReader " + i + ": " + sd.iAtom + " " + sd.x + " " + sd.y +  " " + sd.z + " " + sd.r + " " + sd.zeta + " " + sd.coef);
        }
      }
    if (doSort) {
      Arrays.sort(slaterArray, new SlaterSorter());
      int[] pointers = new int[slaterArray.length];      
      for (int i = 0; i < slaterArray.length; i++)
        pointers[i] = slaterArray[i].index;
      sortOrbitalCoefficients(pointers);
    }
    moData.put("slaters", slaterArray);
    asc.setCurrentModelInfo("moData", moData);
  }

  class SlaterSorter implements Comparator {
    @Override
    public int compare(SlaterData sd1, SlaterData sd2) {
      return ( sd1.iAtom < sd2.iAtom ? -1 : sd1.iAtom > sd2.iAtom ? 1 : 0);
    }    
  }

  protected final void setMOs(String units) {
    moData.put("mos", orbitals);
    moData.put("energyUnits", units);
    finalizeMOData(moData);
  }

  /**
   * sorts coefficients by atomic number for speed later
   * 
   * @param pointers
   */
  protected void sortOrbitalCoefficients(int[] pointers) {
    // now sort the coefficients as well
    for (int i = orbitals.size(); --i >= 0; ) {
      Map mo = orbitals.get(i);
      float[] coefs = (float[]) mo.get("coefficients");
      float[] sorted = new float[pointers.length];
      for (int j = 0; j < pointers.length; j++) {
        int k = pointers[j];
        if (k < coefs.length)
          sorted[j] = coefs[k];
      }
      mo.put("coefficients", sorted);
    }
  }
  
  /**
   * 
   * sorts orbitals by energy rather than by symmetry
   * so that we can use "MO HOMO" "MO HOMO - 1" "MO LUMO"
   * 
   */
  
  @SuppressWarnings("unchecked")
  protected void sortOrbitals() {
    Map[] array = orbitals.toArray(new Map[0]);
    Arrays.sort(array, new OrbitalSorter());
    orbitals.clear();
    for (int i = 0; i < array.length; i++)
      orbitals.addLast(array[i]);    
  }
  
  class OrbitalSorter implements Comparator> {
    @Override
    public int compare(Map mo1, Map mo2) {
      float e1 = ((Float) mo1.get("energy")).floatValue();
      float e2 = ((Float) mo2.get("energy")).floatValue();
      return ( e1 < e2 ? -1 : e2 < e1 ? 1 : 0);
    }    
  }

  ///////////// orbital scaling //////////////////
  
  /**
   * Perform implementation-specific scaling.
   * This method is subclassed in MopacReader
   * to handle spherical slaters
   * 
   * @param ex
   * @param ey
   * @param ez
   * @param er
   * @param zeta
   * @return scaling factor
   */
  protected double scaleSlater(int ex, int ey, int ez, int er, double zeta) {
    int el = ex + ey + ez;
    switch (el) {
    case 0: //S
    case 1: //P
      ez = -1; // no need for ex, ey, ez in that case
      break;
    }
    // A negative zeta means this is contracted, so 
    // there are not as many molecular orbital 
    // coefficients as there are slaters. For example, 
    // an atom's s orbital might have one coefficient
    // for a set of three slaters -- the contracted set.
    return getSlaterConstCartesian(el + er + 1, 
        Math.abs(zeta), el, ex, ey, ez);
  }

  /**
   * Sincere thanks to Miroslav Kohout (DGRID) for helping me get this right
   *   -- Bob Hanson, 1/5/2010
   *   
   * slater scaling based on zeta, n, l, and x y z exponents.
   * 
   * sqrt[(2zeta)^(2n + 1) 
   *         * (2 el + 1)!! / (2 ex - 1)!! / (2 ey - 1)!! / (2 ez - 1)!!
   *         / 4pi / (2n)! 
   *     ]
   *     
   * The double factorials are precalculated.
   * 
   * @param f
   * @param zeta
   * @param n
   * @return scaled exponent
   */
  private static double fact(double f, double zeta, int n) {
    return Math.pow(2 * zeta, n + 0.5) * Math.sqrt(f * _1_4pi / fact1[n]);
  }

  private final static double _1_4pi = 0.25 / Math.PI;

  // (2n)! 
  private final static double[] fact1 = new double[] {
    1.0, 2.0, 24.0, 720.0, 40320.0, 362880.0, 87178291200.0 };
 
  //                                               x   0  1  2  3   4
  // (2x - 1)!!   double factorial                        s  p  d   f
  private final static double[] dfact2 = new double[] { 1, 1, 3, 15, 105 };

  /**
   *  scales slater using double factorials involving 
   *  quantum number n, l, and xyz exponents. fact2[x] is (2x - 1)!!
   *  Since x!! = 1 for x = 1, 0 or -1, we can just ignore this
   *  part for s and p orbitals, where x, y, and z are all 0 or 1.
   *  
   *  7!! = 105
   *  5!! = 15
   *  3!! = 3
   *  
   *  Numerators/4pi:
   *  
   *  all d orbitals:     fact2[3] = (2*2 + 1)!! = 5!! = 15/4pi 
   *  all f orbitals:     fact2[4] = (2*3 + 1)!! = 7!! = 105/4pi
   *  
   *  Denominators:
   *  
   *  dxy, dyz, dxz all are 1 giving 15/4pi
   *  dx2, dy2, and dz2 all have one "2", giving 15/3!!/4pi or 5/4pi
   *   
   * @param n
   * @param zeta
   * @param el
   * @param ex
   * @param ey
   * @param ez
   * @return scaled exponent
   */
  protected final static double getSlaterConstCartesian(int n, double zeta,
                                                       int el, int ex, int ey,
                                                       int ez) {
    return fact(ez < 0 ? dfact2[el + 1] 
        : dfact2[el + 1] / dfact2[ex] / dfact2[ey] / dfact2[ez], zeta, n);
  }

  /**
   * spherical scaling factors specifically for x2-y2 and z2 orbitals
   * 
   * see http://openmopac.net/Manual/real_spherical_harmonics.html
   * 
   * dz2     sqrt((1/2p)(5/8))(2cos2(q) -sin2(q))     sqrt(5/16p)(3z2-r2)/r2
   * dxz     sqrt((1/2p)(15/4))(cos(q)sin(q))cos(f)   sqrt(15/4p)(xz)/r2
   * dyz     sqrt((1/2p)(15/4))(cos(q)sin(q))sin(f)   sqrt(15/4p)(yz)/r2
   * dx2-y2  sqrt((1/2p)(15/16))sin2(q)cos2(f)        sqrt(15/16p)(x2-y2)/r2
   * dxy     sqrt((1/2p)(15/16))sin2(q)sin2(f)        sqrt(15/4p)(xy)/r2
   *
   * The fact() method returns sqrt(15/4p) for both z2 and x2-y2. 
   * So now we ned to correct that with sqrt(1/12) for z2 and sqrt(1/4) for x2-y2. 
   * 
   * http://openmopac.net/Manual/real_spherical_harmonics.html
   *
   * Apply the appropriate scaling factor for spherical D orbitals.
   * 
   * ex will be -2 for z2; ey will be -2 for x2-y2
   * 
   * 
   * @param n
   * @param zeta
   * @param ex
   * @param ey
   * @return scaling factor
   */
  protected final static double getSlaterConstDSpherical(int n, double zeta, 
                                                      int ex, int ey) {
    return fact(15 / (ex < 0 ? 12 : ey < 0 ? 4 : 1), zeta, n);
  }
  
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy