All Downloads are FREE. Search and download functionalities are using the official Maven repository.

javajs.util.T3 Maven / Gradle / Ivy

There is a newer version: 14.31.10
Show newest version
/*
   Copyright (C) 1997,1998,1999
   Kenji Hiranabe, Eiwa System Management, Inc.

   This program is free software.
   Implemented by Kenji Hiranabe([email protected]),
   conforming to the Java(TM) 3D API specification by Sun Microsystems.

   Permission to use, copy, modify, distribute and sell this software
   and its documentation for any purpose is hereby granted without fee,
   provided that the above copyright notice appear in all copies and
   that both that copyright notice and this permission notice appear
   in supporting documentation. Kenji Hiranabe and Eiwa System Management,Inc.
   makes no representations about the suitability of this software for any
   purpose.  It is provided "AS IS" with NO WARRANTY.
*/
package javajs.util;

import java.io.Serializable;

import javajs.api.JSONEncodable;

/**
 * A generic 3 element tuple that is represented by single precision floating
 * point x,y and z coordinates.
 * 
 * @version specification 1.1, implementation $Revision: 1.10 $, $Date:
 *          2006/09/08 20:20:20 $
 * @author Kenji hiranabe
 * 
 * additions by Bob Hanson [email protected] 9/30/2012
 * for unique constructor and method names
 * for the optimization of compiled JavaScript using Java2Script
 */
public abstract class T3 implements JSONEncodable, Serializable {

  public float x, y, z;

  /**
   * @j2sIgnore
   * 
   */
  public T3() {
  }

  /**
   * Sets the value of this tuple to the specified xyz coordinates.
   * 
   * @param x
   *        the x coordinate
   * @param y
   *        the y coordinate
   * @param z
   *        the z coordinate
   */
  public final void set(float x, float y, float z) {
    this.x = x;
    this.y = y;
    this.z = z;
  }

  /**
   * Sets the value of this tuple from the 3 values specified in the array.
   * 
   * @param t
   *        the array of length 3 containing xyz in order
   */
  public final void setA(float t[]) {
    // ArrayIndexOutOfBounds is thrown if t.length < 3
    x = t[0];
    y = t[1];
    z = t[2];
  }

  /**
   * Sets the value of this tuple to the value of the Tuple3f argument.
   * 
   * @param t1
   *        the tuple to be copied
   */
  public final void setT(T3 t1) {
    x = t1.x;
    y = t1.y;
    z = t1.z;
  }

  /**
   * Sets the value of this tuple to the vector sum of tuples t1 and t2.
   * 
   * @param t1
   *        the first tuple
   * @param t2
   *        the second tuple
   */
  public final void add2(T3 t1, T3 t2) {
    x = t1.x + t2.x;
    y = t1.y + t2.y;
    z = t1.z + t2.z;
  }

  /**
   * Sets the value of this tuple to the vector sum of itself and tuple t1.
   * 
   * @param t1
   *        the other tuple
   */
  public final void add(T3 t1) {
    x += t1.x;
    y += t1.y;
    z += t1.z;
  }

  /**
   * Computes the square of the distance between this point and point p1.
   * 
   * @param p1
   *        the other point
   * @return the square of distance between these two points as a float
   */
  public final float distanceSquared(T3 p1) {
    double dx = x - p1.x;
    double dy = y - p1.y;
    double dz = z - p1.z;
    return (float) (dx * dx + dy * dy + dz * dz);
  }

  /**
   * Returns the distance between this point and point p1.
   * 
   * @param p1
   *        the other point
   * @return the distance between these two points
   */
  public final float distance(T3 p1) {
    return (float) Math.sqrt(distanceSquared(p1));
  }

  /**
   * Sets the value of this tuple to the vector difference of tuple t1 and t2
   * (this = t1 - t2).
   * 
   * @param t1
   *        the first tuple
   * @param t2
   *        the second tuple
   */
  public final void sub2(T3 t1, T3 t2) {
    x = t1.x - t2.x;
    y = t1.y - t2.y;
    z = t1.z - t2.z;
  }

  /**
   * Sets the value of this tuple to the vector difference of itself and tuple
   * t1 (this = this - t1).
   * 
   * @param t1
   *        the other tuple
   */
  public final void sub(T3 t1) {
    x -= t1.x;
    y -= t1.y;
    z -= t1.z;
  }

  /**
   * Sets the value of this tuple to the scalar multiplication of itself.
   * 
   * @param s
   *        the scalar value
   */
  public final void scale(float s) {
    x *= s;
    y *= s;
    z *= s;
  }

  /**
   * Add {a b c}
   * 
   * @param a
   * @param b
   * @param c
   */
  public final void add3(float a, float b, float c) {
    x += a;
    y += b;
    z += c;
  }

  
  /**
   * {x*p.x, y*p.y, z*p.z)  used for three-way scaling
   * 
   * @param p
   */
  public final void scaleT(T3 p) {
    x *= p.x;
    y *= p.y;
    z *= p.z;
  }

  
  /**
   * Sets the value of this tuple to the scalar multiplication of tuple t1 and
   * then adds tuple t2 (this = s*t1 + t2).
   * 
   * @param s
   *        the scalar value
   * @param t1
   *        the tuple to be multipled
   * @param t2
   *        the tuple to be added
   */
  public final void scaleAdd2(float s, T3 t1, T3 t2) {
    x = s * t1.x + t2.x;
    y = s * t1.y + t2.y;
    z = s * t1.z + t2.z;
  }

  
  /**
   * average of two tuples
   * 
   * @param a
   * @param b
   */
  public void ave(T3 a, T3 b) {
    x = (a.x + b.x) / 2f;
    y = (a.y + b.y) / 2f;
    z = (a.z + b.z) / 2f; 
  }

  /**
   * Vector dot product. Was in Vector3f; more useful here, though.
   * 
   * @param v
   *        the other vector
   * @return this.dot.v
   */
  public final float dot(T3 v) {
    return x * v.x + y * v.y + z * v.z;
  }

  /**
   * Returns the squared length of this vector.
   * Was in Vector3f; more useful here, though.
   * 
   * @return the squared length of this vector
   */
  public final float lengthSquared() {
    return x * x + y * y + z * z;
  }

  /**
   * Returns the length of this vector.
   * Was in Vector3f; more useful here, though.
   * 
   * @return the length of this vector
   */
  public final float length() {
    return (float) Math.sqrt(lengthSquared());
  }

  /**
   * Normalizes this vector in place.
   * Was in Vector3f; more useful here, though.
   */
  public final void normalize() {
    double d = length();

    // zero-div may occur.
    x /= d;
    y /= d;
    z /= d;
  }

  /**
   * Sets this tuple to be the vector cross product of vectors v1 and v2.
   * 
   * @param v1
   *        the first vector
   * @param v2
   *        the second vector
   */
  public final void cross(T3 v1, T3 v2) {
    set(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y
        - v1.y * v2.x);
  }

  /**
   * Returns a hash number based on the data values in this object. Two
   * different Tuple3f objects with identical data values (ie, returns true for
   * equals(Tuple3f) ) will return the same hash number. Two vectors with
   * different data members may return the same hash value, although this is not
   * likely.
   */
  @Override
  public int hashCode() {
    long bits = 1L;
    bits = 31L * bits + floatToIntBits0(x);
    bits = 31L * bits + floatToIntBits0(y);
    bits = 31L * bits + floatToIntBits0(z);
    return (int) (bits ^ (bits >> 32));
  }

  public static int floatToIntBits0(float f) {
    // note: in JavaScript, Float.floatToIntBits(f)) does not exist 
    return (f == 0 ? 0 : String.valueOf(f).hashCode());
  }

  /**
   * Returns true if all of the data members of Tuple3f t1 are equal to the
   * corresponding data members in this
   * 
   * @param t1
   *        the vector with which the comparison is made.
   */
  @Override
  public boolean equals(Object t1) {
    if (!(t1 instanceof T3))
      return false;
    T3 t2 = (T3) t1;
    return (x == t2.x && y == t2.y && z == t2.z);
  }

  /**
   * Returns a string that contains the values of this Tuple3f. The form is
   * (x,y,z).
   * 
   * @return the String representation
   */
  @Override
  public String toString() {
    return "{" + x + ", " + y + ", " + z + "}";
  }
  
  @Override
  public String toJSON() {
    return "[" + x + "," + y + "," + z + "]";
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy