cern.colt.list.tdouble.DoubleArrayList Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.list.tdouble;
import cern.colt.function.tdouble.DoubleProcedure;
/**
* Resizable list holding double
elements; implemented with arrays.
* First see the package summary and javadoc
* tree view to get the broad picture.
*/
public class DoubleArrayList extends AbstractDoubleList {
/**
*
*/
private static final long serialVersionUID = 1L;
/**
* The array buffer into which the elements of the list are stored. The
* capacity of the list is the length of this array buffer.
*
* @serial
*/
protected double[] elements;
/**
* Constructs an empty list.
*/
public DoubleArrayList() {
this(10);
}
/**
* Constructs a list containing the specified elements. The initial size and
* capacity of the list is the length of the array.
*
* WARNING: For efficiency reasons and to keep memory usage low,
* the array is not copied. So if subsequently you modify the
* specified array directly via the [] operator, be sure you know what
* you're doing.
*
* @param elements
* the array to be backed by the the constructed list
*/
public DoubleArrayList(double[] elements) {
elements(elements);
}
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity
* the number of elements the receiver can hold without
* auto-expanding itself by allocating new internal memory.
*/
public DoubleArrayList(int initialCapacity) {
this(new double[initialCapacity]);
setSizeRaw(0);
}
/**
* Appends the specified element to the end of this list.
*
* @param element
* element to be appended to this list.
*/
public void add(double element) {
// overridden for performance only.
if (size == elements.length)
ensureCapacity(size + 1);
elements[size++] = element;
}
/**
* Inserts the specified element before the specified position into the
* receiver. Shifts the element currently at that position (if any) and any
* subsequent elements to the right.
*
* @param index
* index before which the specified element is to be inserted
* (must be in [0,size]).
* @param element
* element to be inserted.
* @exception IndexOutOfBoundsException
* index is out of range (
* index < 0 || index > size()).
*/
public void beforeInsert(int index, double element) {
// overridden for performance only.
if (size == index) {
add(element);
return;
}
if (index > size || index < 0)
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
ensureCapacity(size + 1);
System.arraycopy(elements, index, elements, index + 1, size - index);
elements[index] = element;
size++;
}
/**
* Searches the receiver for the specified value using the binary search
* algorithm. The receiver must must be sorted (as by the
* sort method) prior to making this call. If it is not sorted, the results
* are undefined: in particular, the call may enter an infinite loop. If the
* receiver contains multiple elements equal to the specified object, there
* is no guarantee which instance will be found.
*
* @param key
* the value to be searched for.
* @param from
* the leftmost search position, inclusive.
* @param to
* the rightmost search position, inclusive.
* @return index of the search key, if it is contained in the receiver;
* otherwise, (-(insertion point) - 1). The
* insertion point is defined as the the point at which the
* value would be inserted into the receiver: the index of the first
* element greater than the key, or receiver.size(), if all
* elements in the receiver are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if and
* only if the key is found.
* @see cern.colt.Sorting
* @see java.util.Arrays
*/
public int binarySearchFromTo(double key, int from, int to) {
return cern.colt.Sorting.binarySearchFromTo(this.elements, key, from, to);
}
/**
* Returns a deep copy of the receiver.
*
* @return a deep copy of the receiver.
*/
public Object clone() {
// overridden for performance only.
DoubleArrayList clone = new DoubleArrayList(elements.clone());
clone.setSizeRaw(size);
return clone;
}
/**
* Returns a deep copy of the receiver; uses clone()
and casts
* the result.
*
* @return a deep copy of the receiver.
*/
public DoubleArrayList copy() {
return (DoubleArrayList) clone();
}
/**
* Returns the elements currently stored, including invalid elements between
* size and capacity, if any.
*
* WARNING: For efficiency reasons and to keep memory usage low,
* the array is not copied. So if subsequently you modify the
* returned array directly via the [] operator, be sure you know what you're
* doing.
*
* @return the elements currently stored.
*/
public double[] elements() {
return elements;
}
/**
* Sets the receiver's elements to be the specified array (not a copy of
* it).
*
* The size and capacity of the list is the length of the array.
* WARNING: For efficiency reasons and to keep memory usage low,
* the array is not copied. So if subsequently you modify the
* specified array directly via the [] operator, be sure you know what
* you're doing.
*
* @param elements
* the new elements to be stored.
* @return the receiver itself.
*/
public AbstractDoubleList elements(double[] elements) {
this.elements = elements;
this.size = elements.length;
return this;
}
/**
* Ensures that the receiver can hold at least the specified number of
* elements without needing to allocate new internal memory. If necessary,
* allocates new internal memory and increases the capacity of the receiver.
*
* @param minCapacity
* the desired minimum capacity.
*/
public void ensureCapacity(int minCapacity) {
elements = cern.colt.Arrays.ensureCapacity(elements, minCapacity);
}
/**
* Compares the specified Object with the receiver. Returns true if and only
* if the specified Object is also an ArrayList of the same type, both Lists
* have the same size, and all corresponding pairs of elements in the two
* Lists are identical. In other words, two Lists are defined to be equal if
* they contain the same elements in the same order.
*
* @param otherObj
* the Object to be compared for equality with the receiver.
* @return true if the specified Object is equal to the receiver.
*/
public boolean equals(Object otherObj) { // delta
// overridden for performance only.
if (!(otherObj instanceof DoubleArrayList))
return super.equals(otherObj);
if (this == otherObj)
return true;
if (otherObj == null)
return false;
DoubleArrayList other = (DoubleArrayList) otherObj;
if (size() != other.size())
return false;
double[] theElements = elements();
double[] otherElements = other.elements();
for (int i = size(); --i >= 0;) {
if (theElements[i] != otherElements[i])
return false;
}
return true;
}
/**
* Applies a procedure to each element of the receiver, if any. Starts at
* index 0, moving rightwards.
*
* @param procedure
* the procedure to be applied. Stops iteration if the procedure
* returns false, otherwise continues.
* @return false if the procedure stopped before all elements where
* iterated over, true otherwise.
*/
public boolean forEach(DoubleProcedure procedure) {
// overridden for performance only.
double[] theElements = elements;
int theSize = size;
for (int i = 0; i < theSize;)
if (!procedure.apply(theElements[i++]))
return false;
return true;
}
/**
* Returns the element at the specified position in the receiver.
*
* @param index
* index of element to return.
* @exception IndexOutOfBoundsException
* index is out of range (index < 0 || index >=
* size()).
*/
public double get(int index) {
// overridden for performance only.
if (index >= size || index < 0)
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
return elements[index];
}
/**
* Returns the element at the specified position in the receiver;
* WARNING: Does not check preconditions. Provided with invalid
* parameters this method may return invalid elements without throwing any
* exception! You should only use this method when you are absolutely
* sure that the index is within bounds. Precondition (unchecked):
* index >= 0 && index < size().
*
* @param index
* index of element to return.
*/
public double getQuick(int index) {
return elements[index];
}
/**
* Returns the index of the first occurrence of the specified element.
* Returns -1
if the receiver does not contain this element.
* Searches between from
, inclusive and to
,
* inclusive. Tests for identity.
*
* @param element
* element to search for.
* @param from
* the leftmost search position, inclusive.
* @param to
* the rightmost search position, inclusive.
* @return the index of the first occurrence of the element in the receiver;
* returns -1
if the element is not found.
* @exception IndexOutOfBoundsException
* index is out of range (
* size()>0 && (from<0 || from>to || to>=size())
* ).
*/
public int indexOfFromTo(double element, int from, int to) {
// overridden for performance only.
if (size == 0)
return -1;
checkRangeFromTo(from, to, size);
double[] theElements = elements;
for (int i = from; i <= to; i++) {
if (element == theElements[i]) {
return i;
} // found
}
return -1; // not found
}
/**
* Returns the index of the last occurrence of the specified element.
* Returns -1
if the receiver does not contain this element.
* Searches beginning at to
, inclusive until from
,
* inclusive. Tests for identity.
*
* @param element
* element to search for.
* @param from
* the leftmost search position, inclusive.
* @param to
* the rightmost search position, inclusive.
* @return the index of the last occurrence of the element in the receiver;
* returns -1
if the element is not found.
* @exception IndexOutOfBoundsException
* index is out of range (
* size()>0 && (from<0 || from>to || to>=size())
* ).
*/
public int lastIndexOfFromTo(double element, int from, int to) {
// overridden for performance only.
if (size == 0)
return -1;
checkRangeFromTo(from, to, size);
double[] theElements = elements;
for (int i = to; i >= from; i--) {
if (element == theElements[i]) {
return i;
} // found
}
return -1; // not found
}
/**
* Returns a new list of the part of the receiver between from
,
* inclusive, and to
, inclusive.
*
* @param from
* the index of the first element (inclusive).
* @param to
* the index of the last element (inclusive).
* @return a new list
* @exception IndexOutOfBoundsException
* index is out of range (
* size()>0 && (from<0 || from>to || to>=size())
* ).
*/
public AbstractDoubleList partFromTo(int from, int to) {
if (size == 0)
return new DoubleArrayList(0);
checkRangeFromTo(from, to, size);
double[] part = new double[to - from + 1];
System.arraycopy(elements, from, part, 0, to - from + 1);
return new DoubleArrayList(part);
}
/**
* Removes from the receiver all elements that are contained in the
* specified list. Tests for identity.
*
* @param other
* the other list.
* @return true
if the receiver changed as a result of the
* call.
*/
public boolean removeAll(AbstractDoubleList other) {
// overridden for performance only.
if (!(other instanceof DoubleArrayList))
return super.removeAll(other);
/*
* There are two possibilities to do the thing a) use other.indexOf(...)
* b) sort other, then use other.binarySearch(...)
*
* Let's try to figure out which one is faster. Let M=size,
* N=other.size, then a) takes O(M*N) steps b) takes O(N*logN + M*logN)
* steps (sorting is O(N*logN) and binarySearch is O(logN))
*
* Hence, if N*logN + M*logN < M*N, we use b) otherwise we use a).
*/
if (other.size() == 0) {
return false;
} // nothing to do
int limit = other.size() - 1;
int j = 0;
double[] theElements = elements;
int mySize = size();
double N = other.size();
double M = mySize;
if ((N + M) * cern.jet.math.tdouble.DoubleArithmetic.log2(N) < M * N) {
// it is faster to sort other before searching in it
DoubleArrayList sortedList = (DoubleArrayList) other.clone();
sortedList.quickSort();
for (int i = 0; i < mySize; i++) {
if (sortedList.binarySearchFromTo(theElements[i], 0, limit) < 0)
theElements[j++] = theElements[i];
}
} else {
// it is faster to search in other without sorting
for (int i = 0; i < mySize; i++) {
if (other.indexOfFromTo(theElements[i], 0, limit) < 0)
theElements[j++] = theElements[i];
}
}
boolean modified = (j != mySize);
setSize(j);
return modified;
}
/**
* Replaces a number of elements in the receiver with the same number of
* elements of another list. Replaces elements in the receiver, between
* from
(inclusive) and to
(inclusive), with
* elements of other
, starting from otherFrom
* (inclusive).
*
* @param from
* the position of the first element to be replaced in the
* receiver
* @param to
* the position of the last element to be replaced in the
* receiver
* @param other
* list holding elements to be copied into the receiver.
* @param otherFrom
* position of first element within other list to be copied.
*/
public void replaceFromToWithFrom(int from, int to, AbstractDoubleList other, int otherFrom) {
// overridden for performance only.
if (!(other instanceof DoubleArrayList)) {
// slower
super.replaceFromToWithFrom(from, to, other, otherFrom);
return;
}
int length = to - from + 1;
if (length > 0) {
checkRangeFromTo(from, to, size());
checkRangeFromTo(otherFrom, otherFrom + length - 1, other.size());
System.arraycopy(((DoubleArrayList) other).elements, otherFrom, elements, from, length);
}
}
/**
* Retains (keeps) only the elements in the receiver that are contained in
* the specified other list. In other words, removes from the receiver all
* of its elements that are not contained in the specified other list.
*
* @param other
* the other list to test against.
* @return true
if the receiver changed as a result of the
* call.
*/
public boolean retainAll(AbstractDoubleList other) {
// overridden for performance only.
if (!(other instanceof DoubleArrayList))
return super.retainAll(other);
/*
* There are two possibilities to do the thing a) use other.indexOf(...)
* b) sort other, then use other.binarySearch(...)
*
* Let's try to figure out which one is faster. Let M=size,
* N=other.size, then a) takes O(M*N) steps b) takes O(N*logN + M*logN)
* steps (sorting is O(N*logN) and binarySearch is O(logN))
*
* Hence, if N*logN + M*logN < M*N, we use b) otherwise we use a).
*/
int limit = other.size() - 1;
int j = 0;
double[] theElements = elements;
int mySize = size();
double N = other.size();
double M = mySize;
if ((N + M) * cern.jet.math.tdouble.DoubleArithmetic.log2(N) < M * N) {
// it is faster to sort other before searching in it
DoubleArrayList sortedList = (DoubleArrayList) other.clone();
sortedList.quickSort();
for (int i = 0; i < mySize; i++) {
if (sortedList.binarySearchFromTo(theElements[i], 0, limit) >= 0)
theElements[j++] = theElements[i];
}
} else {
// it is faster to search in other without sorting
for (int i = 0; i < mySize; i++) {
if (other.indexOfFromTo(theElements[i], 0, limit) >= 0)
theElements[j++] = theElements[i];
}
}
boolean modified = (j != mySize);
setSize(j);
return modified;
}
/**
* Reverses the elements of the receiver. Last becomes first, second last
* becomes second first, and so on.
*/
public void reverse() {
// overridden for performance only.
double tmp;
int limit = size / 2;
int j = size - 1;
double[] theElements = elements;
for (int i = 0; i < limit;) { // swap
tmp = theElements[i];
theElements[i++] = theElements[j];
theElements[j--] = tmp;
}
}
/**
* Replaces the element at the specified position in the receiver with the
* specified element.
*
* @param index
* index of element to replace.
* @param element
* element to be stored at the specified position.
* @exception IndexOutOfBoundsException
* index is out of range (index < 0 || index >=
* size()).
*/
public void set(int index, double element) {
// overridden for performance only.
if (index >= size || index < 0)
throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
elements[index] = element;
}
public void setSizeRaw(int size) {
this.size = size;
}
/**
* Replaces the element at the specified position in the receiver with the
* specified element; WARNING: Does not check preconditions. Provided
* with invalid parameters this method may access invalid indexes without
* throwing any exception! You should only use this method when you are
* absolutely sure that the index is within bounds. Precondition
* (unchecked): index >= 0 && index < size().
*
* @param index
* index of element to replace.
* @param element
* element to be stored at the specified position.
*/
public void setQuick(int index, double element) {
elements[index] = element;
}
/**
* Randomly permutes the part of the receiver between from
* (inclusive) and to
(inclusive).
*
* @param from
* the index of the first element (inclusive) to be permuted.
* @param to
* the index of the last element (inclusive) to be permuted.
* @exception IndexOutOfBoundsException
* index is out of range (
* size()>0 && (from<0 || from>to || to>=size())
* ).
*/
public void shuffleFromTo(int from, int to) {
// overridden for performance only.
if (size == 0) {
return;
}
checkRangeFromTo(from, to, size);
cern.jet.random.tdouble.DoubleUniform gen = new cern.jet.random.tdouble.DoubleUniform(
new cern.jet.random.tdouble.engine.DRand(new java.util.Date()));
double tmpElement;
double[] theElements = elements;
int random;
for (int i = from; i < to; i++) {
random = gen.nextIntFromTo(i, to);
// swap(i, random)
tmpElement = theElements[random];
theElements[random] = theElements[i];
theElements[i] = tmpElement;
}
}
/**
* Trims the capacity of the receiver to be the receiver's current size.
* Releases any superfluos internal memory. An application can use this
* operation to minimize the storage of the receiver.
*/
public void trimToSize() {
elements = cern.colt.Arrays.trimToCapacity(elements, size());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy