All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.doc-files.perfBlackdown12pre2with350Mhz.txt Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
Matrix benchmark running on

java.vm.vendor  Sun Microsystems Inc.
java.vm.version 1.2                  
java.vm.name    Classic VM           
os.name         Linux                
os.version      2.0.35               
os.arch         i386                 
java.version    1.2                  
java.vendor.url http://java.sun.com/ 


@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assign [Mops/sec]
type=dense
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 37.772 40.493 37.596 39.108
i 33  | 35.931 31.273 29.131 28.822
z 66  | 25.905 26.243 26.078 26.423
e 100 | 19.681 26.375 25.497 24.463
  300 | 10.355  9.897 10.529 10.279

Performance of DoubleMatrix2D assign [Mops/sec]
type=sparse
      | density
      | 0.0010  0.01    0.1    0.99 
------------------------------------
s 30  |  34.238  19.227  7.641 1.648
i 33  |  68.982  19.067  9.239 1.144
z 66  | 124.51   51.374 13.159 1.351
e 100 | 185.214  80.052 10.547 1.568
  300 | 784.392 163.194 14.102 0.759

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99  
---------------------------------
s 30  | 1.103  2.106 4.92  23.727
i 33  | 0.521  1.64  3.153 25.204
z 66  | 0.208  0.511 1.982 19.556
e 100 | 0.106  0.329 2.418 15.6  
  300 | 0.013  0.061 0.747 13.545
Run took a total of Time=174.361 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 2.532  2.521 2.523 2.526
i 33  | 2.473  2.475 2.483 2.465
z 66  | 2.483  2.462 2.486 2.363
e 100 | 2.489  2.454 2.493 2.49 
  300 | 2.227  2.255 2.246 2.217

Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.503  0.477 0.415 0.227
i 33  | 0.501  0.474 0.421 0.188
z 66  | 0.485  0.479 0.429 0.209
e 100 | 0.489  0.479 0.414 0.228
  300 | 0.487  0.473 0.425 0.176

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99  
---------------------------------
s 30  | 5.033  5.289 6.085 11.107
i 33  | 4.932  5.22  5.901 13.082
z 66  | 5.115  5.144 5.789 11.32 
e 100 | 5.09   5.126 6.021 10.909
  300 | 4.571  4.763 5.291 12.632
Run took a total of Time=158.716 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 1.496  1.46  1.491 1.489
i 33  | 1.473  1.473 1.469 1.471
z 66  | 1.465  1.478 1.475 1.476
e 100 | 1.469  1.479 1.483 1.481
  300 | 1.275  1.377 1.353 1.375

Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.443  0.419 0.371 0.214
i 33  | 0.442  0.418 0.376 0.169
z 66  | 0.426  0.421 0.382 0.19 
e 100 | 0.43   0.422 0.372 0.216
  300 | 0.428  0.417 0.377 0.173

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 3.375  3.485 4.014 6.959
i 33  | 3.336  3.526 3.909 8.695
z 66  | 3.436  3.515 3.858 7.782
e 100 | 3.42   3.505 3.991 6.858
  300 | 2.98   3.298 3.594 7.964
Run took a total of Time=157.747 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=dense
      | density
      | 0.0010  0.01    0.1    0.99  
-------------------------------------
s 30  |  10.028  10.018 10.028 10.018
i 33  |  36.256  24.784 13.77  13.385
z 66  |  85.718  44.97  16.937 17.048
e 100 | 132.518  65.163 19.305 19.675
  300 | 340.157 118.317 16.206 13.957

Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01   0.1   0.99 
---------------------------------
s 30  |  0.887  0.858 0.828 0.668
i 33  |  8.227  2.699 0.875 0.937
z 66  | 21.19   4.479 0.908 0.975
e 100 | 30.907  7.303 0.908 0.985
  300 | 82.537 20.493 0.853 0.947

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 11.305 11.676 12.107 14.987
i 33  |  4.407  9.182 15.74  14.283
z 66  |  4.045 10.04  18.646 17.485
e 100 |  4.288  8.923 21.264 19.98 
  300 |  4.121  5.773 19.001 14.738
Run took a total of Time=253.718 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 6.684  6.63  6.589 6.751
i 33  | 6.677  6.713 6.757 6.862
z 66  | 6.982  7.058 7.068 7    
e 100 | 7.274  6.383 6.856 7.334
  300 | 4.238  4.105 4.142 4.128

Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.311  0.311 0.296 0.317
i 33  | 0.304  0.304 0.303 0.3  
z 66  | 0.308  0.309 0.3   0.277
e 100 | 0.309  0.308 0.308 0.281
  300 | 0.309  0.301 0.284 0.205

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 21.489 21.333 22.24  21.295
i 33  | 22.001 22.089 22.279 22.855
z 66  | 22.701 22.811 23.522 25.308
e 100 | 23.511 20.745 22.288 26.128
  300 | 13.71  13.638 14.583 20.089
Run took a total of Time=162.957 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of LUQuick.decompose [Mflops/sec]
type=dense
      | density
      | 0.0010  0.01   0.1    0.99  
------------------------------------
s 30  |   9.552  8.783  5.388  5.136
i 33  |  10.741  9.897  5.81   5.782
z 66  |  24.068 21.47  10.347  9.467
e 100 |  37.491 32.28  14.422 11.832
  300 | 105.263 77.847 21.713 16.158

Performance of LUQuick.decompose [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01   0.1   0.99 
---------------------------------
s 30  |  2.575  2.133 0.702 0.353
i 33  |  2.747  2.342 0.663 0.424
z 66  |  5.774  4.442 0.802 0.319
e 100 |  8.222  6.143 1.062 0.237
  300 | 23.377 13.319 1.318 0.145

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1    0.99   
-----------------------------------
s 30  | 3.709  4.119  7.672  14.538
i 33  | 3.91   4.226  8.765  13.647
z 66  | 4.169  4.834 12.909  29.649
e 100 | 4.56   5.255 13.58   50.015
  300 | 4.503  5.845 16.474 111.603
Run took a total of Time=275.21 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of LUQuick.solve [Mflops/sec]
type=dense
      | density
      | 0.0010  0.01    0.1    0.99  
-------------------------------------
s 30  |  45.625  37.152 20.652  9.721
i 33  |  52.179  51.074 22.264 10.256
z 66  | 118.886 112.129 21.499 13.246
e 100 | 187.056 176.012 22.422 14.846
  300 | 508.467 278.274 16.231 14.433

Performance of LUQuick.solve [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01   0.1   0.99 
---------------------------------
s 30  |  9.399  9.253 1.757 0.611
i 33  |  9.867 10.165 1.8   0.61 
z 66  | 21.034 20.108 1.073 0.566
e 100 | 31.889 30.134 0.993 0.617
  300 | 94.803 16.99  0.68  0.61 

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 4.854   4.015 11.751 15.909
i 33  | 5.289   5.025 12.37  16.823
z 66  | 5.652   5.576 20.036 23.397
e 100 | 5.866   5.841 22.588 24.047
  300 | 5.363  16.379 23.852 23.654
Run took a total of Time=350.137 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of SOR [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 6.733  6.914 6.899 6.894
i 33  | 6.881  6.873 6.713 6.787
z 66  | 6.473  6.394 6.393 6.397
e 100 | 6.387  6.332 6.344 6.347
  300 | 5.543  5.552 5.838 5.819

Performance of SOR [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 1.056  1.065 0.875 1.163
i 33  | 1.056  1.043 0.981 1.081
z 66  | 0.993  0.988 0.882 1.063
e 100 | 0.967  0.924 0.83  0.953
  300 | 0.953  0.913 0.838 0.958

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 6.375  6.493 7.889 5.929
i 33  | 6.518  6.589 6.841 6.278
z 66  | 6.517  6.47  7.252 6.018
e 100 | 6.606  6.853 7.64  6.661
  300 | 5.815  6.079 6.965 6.074
Run took a total of Time=151.213 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of Correlation [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1    0.99 
---------------------------------
s 30  |  5.384 3.978  2.221 3.9  
i 33  |  5.831 3.993  2.471 4.151
z 66  |  8.94  5.459  3.998 5.825
e 100 | 10.052 6.737  5.752 7.301
  300 | 12.724 9.938 10.131 9.637

Performance of Correlation [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.757  0.719 0.63  0.689
i 33  | 0.761  0.683 0.638 0.69 
z 66  | 0.799  0.778 0.745 0.819
e 100 | 0.867  0.862 0.831 0.889
  300 | 0.772  0.855 0.813 0.896

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  |  7.115  5.533  3.527  5.664
i 33  |  7.664  5.842  3.872  6.017
z 66  | 11.196  7.018  5.365  7.116
e 100 | 11.595  7.817  6.92   8.212
  300 | 16.472 11.624 12.463 10.76 
Run took a total of Time=254.412 secs. End of run.

Program execution took a total of 32.3259 minutes.
Good bye.




© 2015 - 2025 Weber Informatics LLC | Privacy Policy