All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.doc-files.perfSun122classicNT.txt Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
Colt Matrix benchmark running on 

java.vm.vendor  Sun Microsystems Inc.
java.vm.version 1.2.2
java.vm.name    Classic VM
os.name         Windows NT
os.version      4.0
os.arch         x86
java.version    1.2.2
java.vendor     Sun Microsystems Inc.
java.vendor.url http://java.sun.com/

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assign [Mops/sec]
type=dense
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 10.324  9.944 10.913  9.447
i 33  | 11.175 10.462 10.077 10.264
z 66  |  6.798  5.336  6.687  6.181
e 100 |  6.843  6.193  6.264  6.403
  300 |  5.855  5.949  5.83   5.997

Performance of DoubleMatrix2D assign [Mops/sec]
type=sparse
      | density
      | 0.0010  0.01   0.1   0.99 
----------------------------------
s 30  |  40.572 25.085 6.641 0.912
i 33  |  83.837 26.923 7.798 0.597
z 66  | 244.58  53.983 7.461 0.738
e 100 | 248.195 73.074 4.99  0.789
  300 | 618.531 95.736 7.29  0.438

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99  
---------------------------------
s 30  | 0.254  0.396 1.643 10.362
i 33  | 0.133  0.389 1.292 17.196
z 66  | 0.028  0.099 0.896  8.371
e 100 | 0.028  0.085 1.255  8.113
  300 | 0.009  0.062 0.8   13.68 
Run took a total of Time=241.948 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 2.122  2.169 2.141 2.062
i 33  | 2.03   2.099 2.224 2.236
z 66  | 2.002  2.043 1.944 1.991
e 100 | 1.943  1.917 1.936 1.986
  300 | 1.973  2.014 1.919 1.899

Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.465  0.444 0.386 0.183
i 33  | 0.458  0.438 0.384 0.155
z 66  | 0.453  0.444 0.393 0.171
e 100 | 0.455  0.442 0.369 0.196
  300 | 0.451  0.434 0.385 0.143

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99  
---------------------------------
s 30  | 4.562  4.885 5.548 11.279
i 33  | 4.429  4.793 5.795 14.381
z 66  | 4.422  4.603 4.952 11.63 
e 100 | 4.27   4.336 5.239 10.156
  300 | 4.37   4.636 4.981 13.307
Run took a total of Time=174.24 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 1.353  1.376 1.363 1.359
i 33  | 1.381  1.317 1.365 1.328
z 66  | 1.316  1.318 1.322 1.34 
e 100 | 1.309  1.321 1.305 1.364
  300 | 1.304  1.284 1.284 1.322

Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.417  0.398 0.35  0.174
i 33  | 0.418  0.397 0.355 0.142
z 66  | 0.4    0.396 0.312 0.178
e 100 | 0.402  0.322 0.336 0.172
  300 | 0.4    0.385 0.341 0.138

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 3.242  3.458 3.889 7.821
i 33  | 3.304  3.321 3.84  9.339
z 66  | 3.288  3.329 4.242 7.517
e 100 | 3.259  4.104 3.881 7.914
  300 | 3.256  3.333 3.768 9.597
Run took a total of Time=167.661 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=dense
      | density
      | 0.0010  0.01    0.1    0.99  
-------------------------------------
s 30  |  19.703  19.743 19.911 19.673
i 33  |  52.734  32.737 13.624 12.881
z 66  | 178.328  58.46  13.509 11.879
e 100 | 236.193 105.954 14.402 14.265
  300 | 390.738 153.337 14.536 14.536

Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=sparse
      | density
      | 0.0010  0.01   0.1   0.99 
----------------------------------
s 30  |   0.985  0.939 0.877 0.86 
i 33  |  10.956  2.993 0.955 0.897
z 66  |  30.412 10.002 0.969 0.922
e 100 |  47.294 31.793 0.969 0.938
  300 | 124.252 53.395 0.895 0.94 

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 19.997 21.028 22.698 22.874
i 33  |  4.813 10.937 14.273 14.358
z 66  |  5.864  5.845 13.944 12.881
e 100 |  4.994  3.333 14.856 15.214
  300 |  3.145  2.872 16.244 15.462
Run took a total of Time=262.047 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 8.005  7.395 6.643 6.171
i 33  | 5.655  6.642 6.112 5.618
z 66  | 5.191  5.867 5.073 5.286
e 100 | 4.724  5.944 4.966 4.667
  300 | 4.25   4.359 4.705 4.538

Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.304  0.324 0.291 0.289
i 33  | 0.314  0.308 0.315 0.274
z 66  | 0.319  0.302 0.313 0.305
e 100 | 0.299  0.306 0.29  0.292
  300 | 0.308  0.294 0.3   0.274

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 26.325 22.833 22.794 21.387
i 33  | 18.016 21.575 19.395 20.467
z 66  | 16.284 19.453 16.21  17.328
e 100 | 15.817 19.419 17.135 15.988
  300 | 13.781 14.828 15.706 16.588
Run took a total of Time=221.979 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of LUQuick.decompose [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 12.794  8.351  6.874  6.206
i 33  | 13.448  8.998  7.154  6.861
z 66  | 27.828 26.846  9.663  9.466
e 100 | 40.65  36.748 12.247 10.86 
  300 | 81.338 55.166 17.366 12.312

Performance of LUQuick.decompose [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01   0.1   0.99 
---------------------------------
s 30  |  2.819  2.272 0.814 0.334
i 33  |  3.099  2.511 0.772 0.445
z 66  |  6.412  4.669 0.848 0.337
e 100 |  8.67   6.591 1.168 0.219
  300 | 24.075 14.32  1.405 0.121

Speedup of dense over sparse
      | density
      | 0.0010 0.01  0.1    0.99   
-----------------------------------
s 30  | 4.538  3.675  8.441  18.558
i 33  | 4.339  3.584  9.262  15.415
z 66  | 4.34   5.75  11.388  28.078
e 100 | 4.689  5.576 10.485  49.603
  300 | 3.379  3.852 12.357 101.411
Run took a total of Time=303.376 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of LUQuick.solve [Mflops/sec]
type=dense
      | density
      | 0.0010  0.01    0.1    0.99  
-------------------------------------
s 30  |  52.247  45.912 25.297 10.579
i 33  |  54.615  50.276 26.813 11.33 
z 66  | 116.219 110.52  18.547 11.242
e 100 | 170.823 176.341 17.208 11.155
  300 | 465.953 224.399 14.463 12.239

Performance of LUQuick.solve [Mflops/sec]
type=sparse
      | density
      | 0.0010  0.01   0.1   0.99 
----------------------------------
s 30  |  10.093 10.176 2.229 0.796
i 33  |  11.039 11.225 2.065 0.8  
z 66  |  22.166 22.872 1.375 0.751
e 100 |  35.902 31.849 1.285 0.764
  300 | 103.053 16.053 0.893 0.792

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 5.177   4.512 11.35  13.294
i 33  | 4.947   4.479 12.984 14.157
z 66  | 5.243   4.832 13.492 14.978
e 100 | 4.758   5.537 13.391 14.595
  300 | 4.522  13.978 16.2   15.452
Run took a total of Time=315.123 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of SOR [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 11.881 12.059 11.193 11.724
i 33  | 12.467 11.269 10.788 11.907
z 66  | 10.782 10.452 10.71  10.438
e 100 | 10.112 10.527  9.873 10.072
  300 |  9.757 10.379  9.616  9.757

Performance of SOR [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 1.073  1.045 0.815 1.047
i 33  | 1.109  1.004 0.944 0.986
z 66  | 1.026  0.947 0.82  0.928
e 100 | 0.97   0.929 0.823 0.931
  300 | 0.963  0.873 0.722 0.884

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  | 11.075 11.544 13.731 11.199
i 33  | 11.238 11.226 11.434 12.072
z 66  | 10.512 11.041 13.057 11.251
e 100 | 10.424 11.337 11.989 10.817
  300 | 10.132 11.888 13.314 11.036
Run took a total of Time=183.243 secs. End of run.

@x....x....x....x....x....
@x....x....x....x....x....*
Performance of Correlation [Mflops/sec]
type=dense
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  |  7.741  7.173  8.15   6.187
i 33  |  8.248  7.654  7.859  7.609
z 66  | 10.446  9.669  9.808  9.433
e 100 | 11.324 10.616 12.292 11.259
  300 | 14.051 13.907 14.545 13.839

Performance of Correlation [Mflops/sec]
type=sparse
      | density
      | 0.0010 0.01  0.1   0.99 
--------------------------------
s 30  | 0.833  0.782 0.847 0.755
i 33  | 0.757  0.757 0.822 0.686
z 66  | 0.849  0.94  0.841 0.821
e 100 | 0.938  0.979 0.921 0.909
  300 | 0.775  0.905 0.834 0.887

Speedup of dense over sparse
      | density
      | 0.0010 0.01   0.1    0.99  
-----------------------------------
s 30  |  9.294  9.178  9.62   8.197
i 33  | 10.894 10.105  9.566 11.092
z 66  | 12.306 10.284 11.667 11.49 
e 100 | 12.07  10.842 13.345 12.39 
  300 | 18.133 15.371 17.443 15.604
Run took a total of Time=261.967 secs. End of run.

Program execution took a total of 35.559467 minutes.
Good bye.




© 2015 - 2025 Weber Informatics LLC | Privacy Policy