All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.doc-files.perfSun122classicSun450.txt Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
Colt Matrix benchmark running on

java.vm.vendor  Sun Microsystems Inc.
java.vm.version 1.2.2                
java.vm.name    Classic VM           
os.name         SunOS                
os.version      5.6                  
os.arch         sparc                
java.version    1.2.2                
java.vendor     Sun Microsystems Inc.
java.vendor.url http://java.sun.com/ 


@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assign [Mops/sec]
type=dense
       | density
       | 0.0010 0.01   0.1    0.999 
------------------------------------
s 30   | 50.611 48.976 51.422 40.998
i 33   | 51.926 50.73  51.232 51.087
z 66   | 35.672 38.747 37.082 66.355
e 100  | 34.61  34.919 45.341 79.38 
  300  | 33.078 34.945 58.917 32.68 
  1000 | 30.359 33.066 35.247 33.203

Performance of DoubleMatrix2D assign [Mops/sec]
type=sparse
       | density
       | 0.0010       0.01    0.1     0.999  
---------------------------------------------
s 30   |  52.678       32.446  12.073   2.422
i 33   |  67.286       41.431  14.09    1.792
z 66   | 198.475       91.727  20.491   2.146
e 100  | 334.124      128.369 NaN     NaN    
  300  |   1.17E+003  243.04  NaN     NaN    
  1000 |   1.587E+003 264.553 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 0.961  1.509   4.259  16.924
i 33   | 0.772  1.224   3.636  28.512
z 66   | 0.18   0.422   1.81   30.919
e 100  | 0.104  0.272 NaN     NaN    
  300  | 0.028  0.144 NaN     NaN    
  1000 | 0.019  0.125 NaN     NaN    
Run took a total of Time=207.358 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=dense
       | density
       | 0.0010 0.01  0.1   0.999
---------------------------------
s 30   | 2.14   2.109 2.154 2.367
i 33   | 2.305  2.282 1.71  2.275
z 66   | 2.175  2.015 2.098 2.102
e 100  | 2.172  2.175 2.176 2.182
  300  | 2.095  2.088 1.969 2.061
  1000 | 1.889  1.998 1.804 1.993

Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 0.481  0.471   0.413   0.252
i 33   | 0.493  0.474   0.432   0.212
z 66   | 0.471  0.463   0.432   0.229
e 100  | 0.472  0.474 NaN     NaN    
  300  | 0.479  0.453 NaN     NaN    
  1000 | 0.465  0.462 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 4.451  4.474   5.209   9.393
i 33   | 4.671  4.815   3.96   10.711
z 66   | 4.618  4.35    4.861   9.168
e 100  | 4.6    4.594 NaN     NaN    
  300  | 4.377  4.606 NaN     NaN    
  1000 | 4.062  4.324 NaN     NaN    
Run took a total of Time=162.74 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=dense
       | density
       | 0.0010 0.01  0.1   0.999
---------------------------------
s 30   | 1.455  1.377 1.42  1.199
i 33   | 1.363  1.371 1.367 1.307
z 66   | 1.344  1.342 1.342 1.131
e 100  | 1.346  1.343 1.347 1.346
  300  | 1.212  1.315 1.129 1.294
  1000 | 1.203  1.268 1.265 1.259

Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 0.42   0.396   0.34    0.232
i 33   | 0.418  0.413   0.351   0.197
z 66   | 0.413  0.405   0.381   0.21 
e 100  | 0.415  0.41  NaN     NaN    
  300  | 0.395  0.402 NaN     NaN    
  1000 | 0.411  0.405 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 3.466  3.477   4.172   5.157
i 33   | 3.265  3.322   3.896   6.626
z 66   | 3.257  3.318   3.519   5.379
e 100  | 3.241  3.275 NaN     NaN    
  300  | 3.065  3.268 NaN     NaN    
  1000 | 2.93   3.131 NaN     NaN    
Run took a total of Time=163.725 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=dense
       | density
       | 0.0010  0.01    0.1    0.999 
--------------------------------------
s 30   |  23.683  23.746 23.571 23.341
i 33   |  44.956  32.32  18.397 18.803
z 66   |  96.951  43.991 23.803 20.81 
e 100  | 153.296  77.975 27.317 25.048
  300  | 384.146 138.402 23.841 23.067
  1000 | 760.746 153.198 22.933 22.523

Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=sparse
       | density
       | 0.0010  0.01   0.1     0.999  
---------------------------------------
s 30   |   0.994  0.971   0.914   0.924
i 33   |   9.056  2.938   1.001   1.046
z 66   |  23.533  4.668   0.971   0.998
e 100  |  34.247  7.855 NaN     NaN    
  300  |  89.293 21.386 NaN     NaN    
  1000 | 210.793 40.989 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   | 23.837 24.454  25.778  25.255
i 33   |  4.964 11.001  18.374  17.973
z 66   |  4.12   9.424  24.507  20.856
e 100  |  4.476  9.927 NaN     NaN    
  300  |  4.302  6.472 NaN     NaN    
  1000 |  3.609  3.737 NaN     NaN    
Run took a total of Time=385.078 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=dense
       | density
       | 0.0010 0.01   0.1    0.999 
------------------------------------
s 30   | 12.067 14.148 14.365 12.862
i 33   | 11.744 14.002 11.695 10.333
z 66   | 11.347  8.23   8.394  7.249
e 100  |  7.706  7.401  7.99   7.523
  300  |  7.577  8.612 11.519 12.082
  1000 |  7.589  7.665  7.784  7.514

Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 0.292  0.294   0.294   0.267
i 33   | 0.286  0.287   0.291   0.262
z 66   | 0.293  0.295   0.273   0.275
e 100  | 0.281  0.292 NaN     NaN    
  300  | 0.291  0.28  NaN     NaN    
  1000 | 0.283  0.283 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   | 41.26  48.054  48.88   48.196
i 33   | 40.993 48.786  40.187  39.459
z 66   | 38.782 27.916  30.804  26.334
e 100  | 27.458 25.339 NaN     NaN    
  300  | 26.051 30.742 NaN     NaN    
  1000 | 26.812 27.073 NaN     NaN    
Run took a total of Time=172.681 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of LUQuick.decompose [Mflops/sec]
type=dense
       | density
       | 0.0010  0.01    0.1    0.999 
--------------------------------------
s 30   |  10.433   9.52   6.793  6.517
i 33   |   9.453  10.928  7.379  7.09 
z 66   |  25.092  22.833 12.822  9.718
e 100  |  37.446  31.121 18.018 15.737
  300  | 105.058  83.955 24.194 24.011
  1000 | 276.51  164.487 30.901 24.527

Performance of LUQuick.decompose [Mflops/sec]
type=sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   |  2.796  2.417   0.835   0.188
i 33   |  3.046  2.604   0.791   0.336
z 66   |  6.267  4.794   0.928   0.137
e 100  |  8.996  6.219 NaN     NaN    
  300  | 25.14  14.09  NaN     NaN    
  1000 | 66.381 20.176 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 3.731  3.939   8.136  34.759
i 33   | 3.104  4.197   9.333  21.128
z 66   | 4.004  4.763  13.815  70.908
e 100  | 4.162  5.004 NaN     NaN    
  300  | 4.179  5.958 NaN     NaN    
  1000 | 4.165  8.153 NaN     NaN    
Run took a total of Time=236.709 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of LUQuick.solve [Mflops/sec]
type=dense
       | density
       | 0.0010       0.01    0.1    0.999 
-------------------------------------------
s 30   |  54.678       54.323 30.43  15.455
i 33   |  61.571       58.902 37.943 15.235
z 66   | 125.419      122.047 25.812 15.815
e 100  | 204.674      188.824 31.108 20.24 
  300  | 641.5        475.727 25.118 21.509
  1000 |   1.777E+003  71.963 19.394 19.598

Performance of LUQuick.solve [Mflops/sec]
type=sparse
       | density
       | 0.0010  0.01   0.1     0.999  
---------------------------------------
s 30   |   9.281  9.277   2.095   0.764
i 33   |  10.179 10.145   2.155   0.743
z 66   |  20.618 18.586   1.303   0.77 
e 100  |  30.405 28.451 NaN     NaN    
  300  |  91.831 17.793 NaN     NaN    
  1000 | 303.471  2.643 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   | 5.891   5.856  14.525  20.219
i 33   | 6.049   5.806  17.605  20.505
z 66   | 6.083   6.567  19.802  20.528
e 100  | 6.732   6.637 NaN     NaN    
  300  | 6.986  26.737 NaN     NaN    
  1000 | 5.856  27.23  NaN     NaN    
Run took a total of Time=1253.427 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of SOR [Mflops/sec]
type=dense
       | density
       | 0.0010 0.01   0.1    0.999 
------------------------------------
s 30   | 10.915 10.975 10.814 10.694
i 33   | 10.184 10.61  10.862 10.399
z 66   |  9.536  9.225  9.816  9.636
e 100  |  9.434  9.457  9.625  9.684
  300  |  9.367  9.759  9.444  9.694
  1000 |  9.188  9.105  9.17   9.114

Performance of SOR [Mflops/sec]
type=sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 1.106  1.09    0.912   1.049
i 33   | 1.084  1.076   0.972   1.093
z 66   | 0.96   0.997   0.884   0.915
e 100  | 0.96   0.978 NaN     NaN    
  300  | 0.955  0.917 NaN     NaN    
  1000 | 0.957  0.92  NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   | 9.868  10.071  11.859  10.198
i 33   | 9.398   9.857  11.175   9.512
z 66   | 9.929   9.254  11.101  10.536
e 100  | 9.827   9.667 NaN     NaN    
  300  | 9.805  10.645 NaN     NaN    
  1000 | 9.597   9.901 NaN     NaN    
Run took a total of Time=171.003 secs. End of run.

@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of Correlation [Mflops/sec]
type=dense
       | density
       | 0.0010 0.01   0.1    0.999 
------------------------------------
s 30   |  7.781  7.453  5.712  8.237
i 33   |  8.949  8.048  6.039  8.78 
z 66   | 11.984 11.58   9.195 13.767
e 100  | 17.042 12.974 11.266 16.724
  300  | 24.372 20.141 19.716 20.269
  1000 | 23.261 21.518 22.949 24.271

Performance of Correlation [Mflops/sec]
type=sparse
       | density
       | 0.0010 0.01  0.1     0.999  
-------------------------------------
s 30   | 0.953  0.95    0.874   0.936
i 33   | 0.97   0.946   0.882   0.914
z 66   | 0.964  0.986   0.902   0.971
e 100  | 1.016  0.989 NaN     NaN    
  300  | 1.041  0.993 NaN     NaN    
  1000 | 1.051  1.021 NaN     NaN    

Speedup of dense over sparse
       | density
       | 0.0010 0.01   0.1     0.999  
--------------------------------------
s 30   |  8.169  7.845   6.535   8.803
i 33   |  9.23   8.511   6.851   9.604
z 66   | 12.436 11.751  10.199  14.178
e 100  | 16.778 13.122 NaN     NaN    
  300  | 23.402 20.286 NaN     NaN    
  1000 | 22.124 21.066 NaN     NaN    
Run took a total of Time=2291.935 secs. End of run.

Program execution took a total of 84.087814 minutes.
Good bye.




© 2015 - 2025 Weber Informatics LLC | Privacy Policy