cern.colt.matrix.doc-files.perfSun122classicSun450.txt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
Colt Matrix benchmark running on
java.vm.vendor Sun Microsystems Inc.
java.vm.version 1.2.2
java.vm.name Classic VM
os.name SunOS
os.version 5.6
os.arch sparc
java.version 1.2.2
java.vendor Sun Microsystems Inc.
java.vendor.url http://java.sun.com/
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assign [Mops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
------------------------------------
s 30 | 50.611 48.976 51.422 40.998
i 33 | 51.926 50.73 51.232 51.087
z 66 | 35.672 38.747 37.082 66.355
e 100 | 34.61 34.919 45.341 79.38
300 | 33.078 34.945 58.917 32.68
1000 | 30.359 33.066 35.247 33.203
Performance of DoubleMatrix2D assign [Mops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
---------------------------------------------
s 30 | 52.678 32.446 12.073 2.422
i 33 | 67.286 41.431 14.09 1.792
z 66 | 198.475 91.727 20.491 2.146
e 100 | 334.124 128.369 NaN NaN
300 | 1.17E+003 243.04 NaN NaN
1000 | 1.587E+003 264.553 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 0.961 1.509 4.259 16.924
i 33 | 0.772 1.224 3.636 28.512
z 66 | 0.18 0.422 1.81 30.919
e 100 | 0.104 0.272 NaN NaN
300 | 0.028 0.144 NaN NaN
1000 | 0.019 0.125 NaN NaN
Run took a total of Time=207.358 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
---------------------------------
s 30 | 2.14 2.109 2.154 2.367
i 33 | 2.305 2.282 1.71 2.275
z 66 | 2.175 2.015 2.098 2.102
e 100 | 2.172 2.175 2.176 2.182
300 | 2.095 2.088 1.969 2.061
1000 | 1.889 1.998 1.804 1.993
Performance of DoubleMatrix2D assignGetSetQuick [Mops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 0.481 0.471 0.413 0.252
i 33 | 0.493 0.474 0.432 0.212
z 66 | 0.471 0.463 0.432 0.229
e 100 | 0.472 0.474 NaN NaN
300 | 0.479 0.453 NaN NaN
1000 | 0.465 0.462 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 4.451 4.474 5.209 9.393
i 33 | 4.671 4.815 3.96 10.711
z 66 | 4.618 4.35 4.861 9.168
e 100 | 4.6 4.594 NaN NaN
300 | 4.377 4.606 NaN NaN
1000 | 4.062 4.324 NaN NaN
Run took a total of Time=162.74 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
---------------------------------
s 30 | 1.455 1.377 1.42 1.199
i 33 | 1.363 1.371 1.367 1.307
z 66 | 1.344 1.342 1.342 1.131
e 100 | 1.346 1.343 1.347 1.346
300 | 1.212 1.315 1.129 1.294
1000 | 1.203 1.268 1.265 1.259
Performance of DoubleMatrix2D assignGetSet [Mops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 0.42 0.396 0.34 0.232
i 33 | 0.418 0.413 0.351 0.197
z 66 | 0.413 0.405 0.381 0.21
e 100 | 0.415 0.41 NaN NaN
300 | 0.395 0.402 NaN NaN
1000 | 0.411 0.405 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 3.466 3.477 4.172 5.157
i 33 | 3.265 3.322 3.896 6.626
z 66 | 3.257 3.318 3.519 5.379
e 100 | 3.241 3.275 NaN NaN
300 | 3.065 3.268 NaN NaN
1000 | 2.93 3.131 NaN NaN
Run took a total of Time=163.725 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 23.683 23.746 23.571 23.341
i 33 | 44.956 32.32 18.397 18.803
z 66 | 96.951 43.991 23.803 20.81
e 100 | 153.296 77.975 27.317 25.048
300 | 384.146 138.402 23.841 23.067
1000 | 760.746 153.198 22.933 22.523
Performance of DoubleMatrix.zMult(B,C) [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
---------------------------------------
s 30 | 0.994 0.971 0.914 0.924
i 33 | 9.056 2.938 1.001 1.046
z 66 | 23.533 4.668 0.971 0.998
e 100 | 34.247 7.855 NaN NaN
300 | 89.293 21.386 NaN NaN
1000 | 210.793 40.989 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 23.837 24.454 25.778 25.255
i 33 | 4.964 11.001 18.374 17.973
z 66 | 4.12 9.424 24.507 20.856
e 100 | 4.476 9.927 NaN NaN
300 | 4.302 6.472 NaN NaN
1000 | 3.609 3.737 NaN NaN
Run took a total of Time=385.078 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
------------------------------------
s 30 | 12.067 14.148 14.365 12.862
i 33 | 11.744 14.002 11.695 10.333
z 66 | 11.347 8.23 8.394 7.249
e 100 | 7.706 7.401 7.99 7.523
300 | 7.577 8.612 11.519 12.082
1000 | 7.589 7.665 7.784 7.514
Performance of DoubleMatrix Elementwise mult [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 0.292 0.294 0.294 0.267
i 33 | 0.286 0.287 0.291 0.262
z 66 | 0.293 0.295 0.273 0.275
e 100 | 0.281 0.292 NaN NaN
300 | 0.291 0.28 NaN NaN
1000 | 0.283 0.283 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 41.26 48.054 48.88 48.196
i 33 | 40.993 48.786 40.187 39.459
z 66 | 38.782 27.916 30.804 26.334
e 100 | 27.458 25.339 NaN NaN
300 | 26.051 30.742 NaN NaN
1000 | 26.812 27.073 NaN NaN
Run took a total of Time=172.681 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of LUQuick.decompose [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 10.433 9.52 6.793 6.517
i 33 | 9.453 10.928 7.379 7.09
z 66 | 25.092 22.833 12.822 9.718
e 100 | 37.446 31.121 18.018 15.737
300 | 105.058 83.955 24.194 24.011
1000 | 276.51 164.487 30.901 24.527
Performance of LUQuick.decompose [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 2.796 2.417 0.835 0.188
i 33 | 3.046 2.604 0.791 0.336
z 66 | 6.267 4.794 0.928 0.137
e 100 | 8.996 6.219 NaN NaN
300 | 25.14 14.09 NaN NaN
1000 | 66.381 20.176 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 3.731 3.939 8.136 34.759
i 33 | 3.104 4.197 9.333 21.128
z 66 | 4.004 4.763 13.815 70.908
e 100 | 4.162 5.004 NaN NaN
300 | 4.179 5.958 NaN NaN
1000 | 4.165 8.153 NaN NaN
Run took a total of Time=236.709 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of LUQuick.solve [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------------
s 30 | 54.678 54.323 30.43 15.455
i 33 | 61.571 58.902 37.943 15.235
z 66 | 125.419 122.047 25.812 15.815
e 100 | 204.674 188.824 31.108 20.24
300 | 641.5 475.727 25.118 21.509
1000 | 1.777E+003 71.963 19.394 19.598
Performance of LUQuick.solve [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
---------------------------------------
s 30 | 9.281 9.277 2.095 0.764
i 33 | 10.179 10.145 2.155 0.743
z 66 | 20.618 18.586 1.303 0.77
e 100 | 30.405 28.451 NaN NaN
300 | 91.831 17.793 NaN NaN
1000 | 303.471 2.643 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 5.891 5.856 14.525 20.219
i 33 | 6.049 5.806 17.605 20.505
z 66 | 6.083 6.567 19.802 20.528
e 100 | 6.732 6.637 NaN NaN
300 | 6.986 26.737 NaN NaN
1000 | 5.856 27.23 NaN NaN
Run took a total of Time=1253.427 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of SOR [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
------------------------------------
s 30 | 10.915 10.975 10.814 10.694
i 33 | 10.184 10.61 10.862 10.399
z 66 | 9.536 9.225 9.816 9.636
e 100 | 9.434 9.457 9.625 9.684
300 | 9.367 9.759 9.444 9.694
1000 | 9.188 9.105 9.17 9.114
Performance of SOR [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 1.106 1.09 0.912 1.049
i 33 | 1.084 1.076 0.972 1.093
z 66 | 0.96 0.997 0.884 0.915
e 100 | 0.96 0.978 NaN NaN
300 | 0.955 0.917 NaN NaN
1000 | 0.957 0.92 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 9.868 10.071 11.859 10.198
i 33 | 9.398 9.857 11.175 9.512
z 66 | 9.929 9.254 11.101 10.536
e 100 | 9.827 9.667 NaN NaN
300 | 9.805 10.645 NaN NaN
1000 | 9.597 9.901 NaN NaN
Run took a total of Time=171.003 secs. End of run.
@x....x....x....x....x....x....
@x....x....x....x....x....x....*
Performance of Correlation [Mflops/sec]
type=dense
| density
| 0.0010 0.01 0.1 0.999
------------------------------------
s 30 | 7.781 7.453 5.712 8.237
i 33 | 8.949 8.048 6.039 8.78
z 66 | 11.984 11.58 9.195 13.767
e 100 | 17.042 12.974 11.266 16.724
300 | 24.372 20.141 19.716 20.269
1000 | 23.261 21.518 22.949 24.271
Performance of Correlation [Mflops/sec]
type=sparse
| density
| 0.0010 0.01 0.1 0.999
-------------------------------------
s 30 | 0.953 0.95 0.874 0.936
i 33 | 0.97 0.946 0.882 0.914
z 66 | 0.964 0.986 0.902 0.971
e 100 | 1.016 0.989 NaN NaN
300 | 1.041 0.993 NaN NaN
1000 | 1.051 1.021 NaN NaN
Speedup of dense over sparse
| density
| 0.0010 0.01 0.1 0.999
--------------------------------------
s 30 | 8.169 7.845 6.535 8.803
i 33 | 9.23 8.511 6.851 9.604
z 66 | 12.436 11.751 10.199 14.178
e 100 | 16.778 13.122 NaN NaN
300 | 23.402 20.286 NaN NaN
1000 | 22.124 21.066 NaN NaN
Run took a total of Time=2291.935 secs. End of run.
Program execution took a total of 84.087814 minutes.
Good bye.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy