All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tdcomplex.impl.DenseDComplexMatrix3D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tdcomplex.impl;

import java.util.ArrayList;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

import cern.colt.list.tint.IntArrayList;
import cern.colt.matrix.tdcomplex.DComplexMatrix1D;
import cern.colt.matrix.tdcomplex.DComplexMatrix2D;
import cern.colt.matrix.tdcomplex.DComplexMatrix3D;
import cern.colt.matrix.tdouble.DoubleMatrix3D;
import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix3D;
import edu.emory.mathcs.jtransforms.fft.DoubleFFT_3D;
import edu.emory.mathcs.utils.ConcurrencyUtils;

/**
 * Dense 3-d matrix holding complex elements.
 * 

* Internally holds one single contigous one-dimensional array, addressed in (in * decreasing order of significance): slice major, row major, column major. * Complex data is represented by 2 double values in sequence, i.e. * elements[idx] constitute the real part and elements[idx+1] constitute the * imaginary part, where idx = index(0,0,0) + slice * sliceStride + row * * rowStride + column * columnStride. Note that this implementation is not * synchronized. *

* Applications demanding utmost speed can exploit knowledge about the internal * addressing. Setting/getting values in a loop slice-by-slice, row-by-row, * column-by-column is quicker than, for example, column-by-column, row-by-row, * slice-by-slice. Thus * *

 * for (int slice = 0; slice < slices; slice++) {
 *     for (int row = 0; row < rows; row++) {
 *         for (int column = 0; column < columns; column++) {
 *             matrix.setQuick(slice, row, column, someValue);
 *         }
 *     }
 * }
 * 
* * is quicker than * *
 * for (int column = 0; column < columns; column++) {
 *     for (int row = 0; row < rows; row++) {
 *         for (int slice = 0; slice < slices; slice++) {
 *             matrix.setQuick(slice, row, column, someValue);
 *         }
 *     }
 * }
 * 
* * @author Piotr Wendykier ([email protected]) */ public class DenseDComplexMatrix3D extends DComplexMatrix3D { private static final long serialVersionUID = 1L; private DoubleFFT_3D fft3; /** * The elements of this matrix. elements are stored in slice major, then row * major, then column major, in order of significance. Complex data is * represented by 2 double values in sequence, i.e. elements[idx] constitute * the real part and elements[idx+1] constitute the imaginary part, where * idx = index(0,0,0) + slice * sliceStride + row * rowStride + column * * columnStride. */ protected double[] elements; /** * Constructs a matrix with a copy of the given values. * values is * required to have the form * re = values[slice][row][2*column], im = values[slice][row][2*column+1] * and have exactly the same number of rows in every slice and exactly the * same number of columns in in every row. *

* The values are copied. So subsequent changes in values are not * reflected in the matrix, and vice-versa. * * @param values * The values to be filled into the new matrix. * @throws IllegalArgumentException * if * for any 1 <= slice < values.length: values[slice].length != values[slice-1].length * . * @throws IllegalArgumentException * if * for any 1 <= row < values[0].length: values[slice][row].length != values[slice][row-1].length * . */ public DenseDComplexMatrix3D(double[][][] values) { this(values.length, (values.length == 0 ? 0 : values[0].length), (values.length == 0 ? 0 : values[0].length == 0 ? 0 : values[0][0].length / 2)); assign(values); } /** * Constructs a matrix with the same size as realPart matrix and * fills the real part of this matrix with elements of realPart. * * @param realPart * a real matrix whose elements become a real part of this matrix * @throws IllegalArgumentException * if (double)slices*columns*rows > Integer.MAX_VALUE. * @throws IllegalArgumentException * if slices<0 || rows<0 || columns<0. */ public DenseDComplexMatrix3D(DoubleMatrix3D realPart) { this(realPart.slices(), realPart.rows(), realPart.columns()); assignReal(realPart); } /** * Constructs a matrix with a given number of slices, rows and columns. All * entries are initially 0. * * @param slices * the number of slices the matrix shall have. * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @throws IllegalArgumentException * if (double)slices*columns*rows > Integer.MAX_VALUE. * @throws IllegalArgumentException * if slices<0 || rows<0 || columns<0. */ public DenseDComplexMatrix3D(int slices, int rows, int columns) { setUp(slices, rows, columns, 0, 0, 0, rows * 2 * columns, 2 * columns, 2); this.elements = new double[slices * rows * 2 * columns]; } /** * Constructs a matrix with the given parameters. * * @param slices * the number of slices the matrix shall have. * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @param elements * the cells. * @param sliceZero * the position of the first element. * @param rowZero * the position of the first element. * @param columnZero * the position of the first element. * @param sliceStride * the number of elements between two slices, i.e. * index(k+1,i,j)-index(k,i,j). * @param rowStride * the number of elements between two rows, i.e. * index(k,i+1,j)-index(k,i,j). * @param columnStride * the number of elements between two columns, i.e. * index(k,i,j+1)-index(k,i,j). * @param isNoView * if false then the view is constructed * * @throws IllegalArgumentException * if (double)slices*columns*rows > Integer.MAX_VALUE. * @throws IllegalArgumentException * if slices<0 || rows<0 || columns<0. */ public DenseDComplexMatrix3D(int slices, int rows, int columns, double[] elements, int sliceZero, int rowZero, int columnZero, int sliceStride, int rowStride, int columnStride, boolean isNoView) { setUp(slices, rows, columns, sliceZero, rowZero, columnZero, sliceStride, rowStride, columnStride); this.elements = elements; this.isNoView = isNoView; } public double[] aggregate(final cern.colt.function.tdcomplex.DComplexDComplexDComplexFunction aggr, final cern.colt.function.tdcomplex.DComplexDComplexFunction f) { double[] b = new double[2]; if (size() == 0) { b[0] = Double.NaN; b[1] = Double.NaN; return b; } final int zero = (int) index(0, 0, 0); double[] a = null; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public double[] call() throws Exception { int idx = zero + firstSlice * sliceStride; double[] a = f.apply(new double[] { elements[idx], elements[idx + 1] }); int d = 1; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; a = aggr.apply(a, f.apply(new double[] { elements[idx], elements[idx + 1] })); } d = 0; } } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(new double[] { elements[zero], elements[zero + 1] }); int d = 1; // first cell already done int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; a = aggr.apply(a, f.apply(new double[] { elements[idx], elements[idx + 1] })); } d = 0; } } } return a; } public double[] aggregate(final DComplexMatrix3D other, final cern.colt.function.tdcomplex.DComplexDComplexDComplexFunction aggr, final cern.colt.function.tdcomplex.DComplexDComplexDComplexFunction f) { checkShape(other); double[] b = new double[2]; if (size() == 0) { b[0] = Double.NaN; b[1] = Double.NaN; return b; } final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other.index(0, 0, 0); final int sliceStrideOther = other.sliceStride(); final int rowStrideOther = other.rowStride(); final int colStrideOther = other.columnStride(); final double[] elemsOther = (double[]) other.elements(); double[] a = null; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public double[] call() throws Exception { int idx = zero + firstSlice * sliceStride; int idxOther = zeroOther + firstSlice * sliceStrideOther; double[] a = f.apply(new double[] { elements[idx], elements[idx + 1] }, new double[] { elemsOther[idxOther], elemsOther[idxOther + 1] }); int d = 1; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther + c * colStrideOther; a = aggr.apply(a, f.apply(new double[] { elements[idx], elements[idx + 1] }, new double[] { elemsOther[idxOther], elemsOther[idxOther + 1] })); } d = 0; } } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(new double[] { elements[zero], elements[zero + 1] }, new double[] { elemsOther[zeroOther], elemsOther[zeroOther + 1] }); int d = 1; // first cell already done int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther + c * colStrideOther; a = aggr.apply(a, f.apply(new double[] { elements[idx], elements[idx + 1] }, new double[] { elemsOther[idxOther], elemsOther[idxOther + 1] })); } d = 0; } } } return a; } public DComplexMatrix3D assign(final cern.colt.function.tdcomplex.DComplexDComplexFunction function) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; double[] elem = new double[2]; if (function instanceof cern.jet.math.tdcomplex.DComplexMult) { double[] multiplicator = ((cern.jet.math.tdcomplex.DComplexMult) function).multiplicator; // x[i] = mult*x[i] for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elements[idx] = elem[0] * multiplicator[0] - elem[1] * multiplicator[1]; elements[idx + 1] = elem[1] * multiplicator[0] + elem[0] * multiplicator[1]; idx += columnStride; } } } } else { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elem = function.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = elem[1]; idx += columnStride; } } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; double[] elem = new double[2]; if (function instanceof cern.jet.math.tdcomplex.DComplexMult) { double[] multiplicator = ((cern.jet.math.tdcomplex.DComplexMult) function).multiplicator; // x[i] = mult*x[i] for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elements[idx] = elem[0] * multiplicator[0] - elem[1] * multiplicator[1]; elements[idx + 1] = elem[1] * multiplicator[0] + elem[0] * multiplicator[1]; idx += columnStride; } } } } else { for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elem = function.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = elem[1]; idx += columnStride; } } } } } return this; } public DComplexMatrix3D assign(final cern.colt.function.tdcomplex.DComplexProcedure cond, final cern.colt.function.tdcomplex.DComplexDComplexFunction f) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] elem = new double[2]; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; if (cond.apply(elem) == true) { elem = f.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = elem[1]; } idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { double[] elem = new double[2]; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; if (cond.apply(elem) == true) { elem = f.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = elem[1]; } idx += columnStride; } } } } return this; } public DComplexMatrix3D assign(final cern.colt.function.tdcomplex.DComplexProcedure cond, final double[] value) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] elem = new double[2]; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; if (cond.apply(elem) == true) { elements[idx] = value[0]; elements[idx + 1] = value[1]; } idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { double[] elem = new double[2]; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; if (cond.apply(elem) == true) { elements[idx] = value[0]; elements[idx + 1] = value[1]; } idx += columnStride; } } } } return this; } public DComplexMatrix3D assign(final cern.colt.function.tdcomplex.DComplexRealFunction function) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; double[] elem = new double[2]; if (function == cern.jet.math.tdcomplex.DComplexFunctions.abs) { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; double absX = Math.abs(elements[idx]); double absY = Math.abs(elements[idx + 1]); if (absX == 0 && absY == 0) { elements[idx] = 0; } else if (absX >= absY) { double d = elem[1] / elem[0]; elements[idx] = absX * Math.sqrt(1 + d * d); } else { double d = elem[0] / elem[1]; elements[idx] = absY * Math.sqrt(1 + d * d); } elements[idx + 1] = 0; idx += columnStride; } } } } else { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elem[0] = function.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = 0; idx += columnStride; } } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; double[] elem = new double[2]; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem[0] = elements[idx]; elem[1] = elements[idx + 1]; elem[0] = function.apply(elem); elements[idx] = elem[0]; elements[idx + 1] = 0; idx += columnStride; } } } } return this; } public DComplexMatrix3D assign(DComplexMatrix3D source) { // overriden for performance only if (!(source instanceof DenseDComplexMatrix3D)) { super.assign(source); return this; } DenseDComplexMatrix3D other = (DenseDComplexMatrix3D) source; if (other == this) return this; checkShape(other); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView && other.isNoView) { // quickest System.arraycopy(other.elements, 0, this.elements, 0, this.elements.length); return this; } if (haveSharedCells(other)) { DComplexMatrix3D c = other.copy(); if (!(c instanceof DenseDComplexMatrix3D)) { // should not happen super.assign(source); return this; } other = (DenseDComplexMatrix3D) c; } final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other.index(0, 0, 0); final int sliceStrideOther = other.sliceStride; final int rowStrideOther = other.rowStride; final int columnStrideOther = other.columnStride; final double[] elemsOther = other.elements; if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; elements[idx + 1] = elemsOther[idxOther + 1]; idx += columnStride; idxOther += columnStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; elements[idx + 1] = elemsOther[idxOther + 1]; idx += columnStride; idxOther += columnStrideOther; } } } } return this; } public DComplexMatrix3D assign(final DComplexMatrix3D y, final cern.colt.function.tdcomplex.DComplexDComplexDComplexFunction function) { checkShape(y); final int zero = (int) index(0, 0, 0); final int zeroOther = (int) y.index(0, 0, 0); final int colStrideOther = y.columnStride(); final int sliceStrideOther = y.sliceStride(); final int rowStrideOther = y.rowStride(); final double[] elemsOther = (double[]) y.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; double[] tmp1 = new double[2]; double[] tmp2 = new double[2]; if (function == cern.jet.math.tdcomplex.DComplexFunctions.mult) { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] - tmp1[1] * tmp2[1]; elements[idx + 1] = tmp1[1] * tmp2[0] + tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else if (function == cern.jet.math.tdcomplex.DComplexFunctions.multConjFirst) { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] + tmp1[1] * tmp2[1]; elements[idx + 1] = -tmp1[1] * tmp2[0] + tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else if (function == cern.jet.math.tdcomplex.DComplexFunctions.multConjSecond) { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] + tmp1[1] * tmp2[1]; elements[idx + 1] = tmp1[1] * tmp2[0] - tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else { for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; tmp1 = function.apply(tmp1, tmp2); elements[idx] = tmp1[0]; elements[idx + 1] = tmp1[1]; idx += columnStride; idxOther += colStrideOther; } } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; double[] tmp1 = new double[2]; double[] tmp2 = new double[2]; if (function == cern.jet.math.tdcomplex.DComplexFunctions.mult) { for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] - tmp1[1] * tmp2[1]; elements[idx + 1] = tmp1[1] * tmp2[0] + tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else if (function == cern.jet.math.tdcomplex.DComplexFunctions.multConjFirst) { for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] + tmp1[1] * tmp2[1]; elements[idx + 1] = -tmp1[1] * tmp2[0] + tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else if (function == cern.jet.math.tdcomplex.DComplexFunctions.multConjSecond) { for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; elements[idx] = tmp1[0] * tmp2[0] + tmp1[1] * tmp2[1]; elements[idx + 1] = tmp1[1] * tmp2[0] - tmp1[0] * tmp2[1]; idx += columnStride; idxOther += colStrideOther; } } } } else { for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { tmp1[0] = elements[idx]; tmp1[1] = elements[idx + 1]; tmp2[0] = elemsOther[idxOther]; tmp2[1] = elemsOther[idxOther + 1]; tmp1 = function.apply(tmp1, tmp2); elements[idx] = tmp1[0]; elements[idx + 1] = tmp1[1]; idx += columnStride; idxOther += colStrideOther; } } } } } return this; } public DComplexMatrix3D assign(final double re, final double im) { if (this.isNoView == false) { return super.assign(re, im); } final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (slices * rows * columns >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = re; elements[idx + 1] = im; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = re; elements[idx + 1] = im; idx += columnStride; } } } } return this; } public DComplexMatrix3D assign(final double[] values) { if (values.length != slices * rows * 2 * columns) throw new IllegalArgumentException("Must have same length: length=" + values.length + "slices()*rows()*2*columns()=" + slices() * rows() * 2 * columns()); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView) { System.arraycopy(values, 0, elements, 0, values.length); } else { final int zero = (int) index(0, 0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idxOther = firstSlice * 2 * rows * columns; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = values[idxOther++]; elements[idx + 1] = values[idxOther++]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idxOther = 0; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = values[idxOther++]; elements[idx + 1] = values[idxOther++]; idx += columnStride; } } } } } return this; } public DComplexMatrix3D assign(final double[][][] values) { if (values.length != slices) throw new IllegalArgumentException("Must have same number of slices: slices=" + values.length + "slices()=" + slices()); final int length = 2 * columns; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView) { if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int i = firstSlice * sliceStride; for (int s = firstSlice; s < lastSlice; s++) { double[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException( "Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { double[] currentRow = currentSlice[r]; if (currentRow.length != length) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "2 * columns()=" + length); System.arraycopy(currentRow, 0, elements, i, length); i += length; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int i = 0; for (int s = 0; s < slices; s++) { double[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException("Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { double[] currentRow = currentSlice[r]; if (currentRow.length != length) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "2 * columns()=" + length); System.arraycopy(currentRow, 0, elements, i, length); i += length; } } } } else { final int zero = (int) index(0, 0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { double[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException( "Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; double[] currentRow = currentSlice[r]; if (currentRow.length != length) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "2*columns()=" + length); for (int c = 0; c < columns; c++) { elements[idx] = currentRow[2 * c]; elements[idx + 1] = currentRow[2 * c + 1]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { double[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException("Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; double[] currentRow = currentSlice[r]; if (currentRow.length != length) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "2*columns()=" + length); for (int c = 0; c < columns; c++) { elements[idx] = currentRow[2 * c]; elements[idx + 1] = currentRow[2 * c + 1]; idx += columnStride; } } } } } return this; } public DComplexMatrix3D assignImaginary(final DoubleMatrix3D other) { checkShape(other); final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other.index(0, 0, 0); final int sliceStrideOther = other.sliceStride(); final int rowStrideOther = other.rowStride(); final int colStrideOther = other.columnStride(); final double[] elemsOther = (double[]) other.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx + 1] = elemsOther[idxOther]; idx += columnStride; idxOther += colStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx + 1] = elemsOther[idxOther]; idx += columnStride; idxOther += colStrideOther; } } } } return this; } public DComplexMatrix3D assignReal(final DoubleMatrix3D other) { checkShape(other); final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other.index(0, 0, 0); final int sliceStrideOther = other.sliceStride(); final int rowStrideOther = other.rowStride(); final int colStrideOther = other.columnStride(); final double[] elemsOther = (double[]) other.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; idx += columnStride; idxOther += colStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; idx += columnStride; idxOther += colStrideOther; } } } } return this; } public int cardinality() { int cardinality = 0; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; Integer[] results = new Integer[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int cardinality = 0; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { if ((elements[idx] != 0.0) || (elements[idx + 1] != 0.0)) { cardinality++; } idx += columnStride; } } } return Integer.valueOf(cardinality); } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (Integer) futures[j].get(); } cardinality = results[0]; for (int j = 1; j < nthreads; j++) { cardinality += results[j]; } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { if ((elements[idx] != 0.0) || (elements[idx + 1] != 0.0)) { cardinality++; } idx += columnStride; } } } } return cardinality; } /** * Computes the 2D discrete Fourier transform (DFT) of each slice of this * matrix. */ public void fft2Slices() { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { ConcurrencyUtils.setThreadsBeginN_2D(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_2Threads(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_4Threads(Integer.MAX_VALUE); nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int s = firstSlice; s < lastSlice; s++) { ((DenseDComplexMatrix2D) viewSlice(s)).fft2(); } } }); } ConcurrencyUtils.waitForCompletion(futures); ConcurrencyUtils.resetThreadsBeginN(); ConcurrencyUtils.resetThreadsBeginN_FFT(); } else { for (int s = 0; s < slices; s++) { ((DenseDComplexMatrix2D) viewSlice(s)).fft2(); } } } /** * Computes the 3D discrete Fourier transform (DFT) of this matrix. */ public void fft3() { int oldNthreads = ConcurrencyUtils.getNumberOfThreads(); ConcurrencyUtils.setNumberOfThreads(ConcurrencyUtils.nextPow2(oldNthreads)); if (fft3 == null) { fft3 = new DoubleFFT_3D(slices, rows, columns); } if (isNoView == true) { fft3.complexForward(elements); } else { DComplexMatrix3D copy = this.copy(); fft3.complexForward((double[]) copy.elements()); this.assign((double[]) copy.elements()); } ConcurrencyUtils.setNumberOfThreads(oldNthreads); } public double[] elements() { return elements; } public DoubleMatrix3D getImaginaryPart() { final DenseDoubleMatrix3D Im = new DenseDoubleMatrix3D(slices, rows, columns); final double[] elemsOther = Im.elements(); final int sliceStrideOther = Im.sliceStride(); final int rowStrideOther = Im.rowStride(); final int columnStrideOther = Im.columnStride(); final int zeroOther = (int) Im.index(0, 0, 0); final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elemsOther[idxOther] = elements[idx + 1]; idx += columnStride; idxOther += columnStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elemsOther[idxOther] = elements[idx + 1]; idx += columnStride; idxOther += columnStrideOther; } } } } return Im; } public void getNonZeros(final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList, final ArrayList valueList) { sliceList.clear(); rowList.clear(); columnList.clear(); valueList.clear(); int zero = (int) index(0, 0, 0); int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { double[] elem = new double[2]; elem[0] = elements[idx]; elem[1] = elements[idx + 1]; if (elem[0] != 0 || elem[1] != 0) { sliceList.add(s); rowList.add(r); columnList.add(c); valueList.add(elem); } idx += columnStride; } } } } public double[] getQuick(int slice, int row, int column) { int idx = sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride; return new double[] { elements[idx], elements[idx + 1] }; } public DoubleMatrix3D getRealPart() { final DenseDoubleMatrix3D R = new DenseDoubleMatrix3D(slices, rows, columns); final double[] elemsOther = R.elements(); final int sliceStrideOther = R.sliceStride(); final int rowStrideOther = R.rowStride(); final int columnStrideOther = R.columnStride(); final int zeroOther = (int) R.index(0, 0, 0); final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elemsOther[idxOther] = elements[idx]; idx += columnStride; idxOther += columnStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elemsOther[idxOther] = elements[idx]; idx += columnStride; idxOther += columnStrideOther; } } } } return R; } /** * Computes the 2D inverse of the discrete Fourier transform (IDFT) of each * slice of this matrix. * * @param scale * if true then scaling is performed */ public void ifft2Slices(final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { ConcurrencyUtils.setThreadsBeginN_2D(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_2Threads(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_4Threads(Integer.MAX_VALUE); nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int s = firstSlice; s < lastSlice; s++) { ((DenseDComplexMatrix2D) viewSlice(s)).ifft2(scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); ConcurrencyUtils.resetThreadsBeginN(); ConcurrencyUtils.resetThreadsBeginN_FFT(); } else { for (int s = 0; s < slices; s++) { ((DenseDComplexMatrix2D) viewSlice(s)).ifft2(scale); } } } /** * Computes the 3D inverse of the discrete Fourier transform (IDFT) of this * matrix. * * @param scale * if true then scaling is performed */ public void ifft3(boolean scale) { int oldNthreads = ConcurrencyUtils.getNumberOfThreads(); ConcurrencyUtils.setNumberOfThreads(ConcurrencyUtils.nextPow2(oldNthreads)); if (fft3 == null) { fft3 = new DoubleFFT_3D(slices, rows, columns); } if (isNoView == true) { fft3.complexInverse(elements, scale); } else { DComplexMatrix3D copy = this.copy(); fft3.complexInverse((double[]) copy.elements(), scale); this.assign((double[]) copy.elements()); } ConcurrencyUtils.setNumberOfThreads(oldNthreads); } public DComplexMatrix3D like(int slices, int rows, int columns) { return new DenseDComplexMatrix3D(slices, rows, columns); } public DComplexMatrix2D like2D(int rows, int columns) { return new DenseDComplexMatrix2D(rows, columns); } public void setQuick(int slice, int row, int column, double re, double im) { int idx = sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride; elements[idx] = re; elements[idx + 1] = im; } public void setQuick(int slice, int row, int column, double[] value) { int idx = sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride; elements[idx] = value[0]; elements[idx + 1] = value[1]; } public double[][][] toArray() { final int zero = (int) index(0, 0, 0); final double[][][] values = new double[slices][rows][2 * columns]; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { double[][] currentSlice = values[s]; for (int r = 0; r < rows; r++) { double[] currentRow = currentSlice[r]; idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { currentRow[2 * c] = elements[idx]; currentRow[2 * c + 1] = elements[idx + 1]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { double[][] currentSlice = values[s]; for (int r = 0; r < rows; r++) { double[] currentRow = currentSlice[r]; idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { currentRow[2 * c] = elements[idx]; currentRow[2 * c + 1] = elements[idx + 1]; idx += columnStride; } } } } return values; } public DComplexMatrix1D vectorize() { DComplexMatrix1D v = new DenseDComplexMatrix1D((int) size()); int length = rows * columns; for (int s = 0; s < slices; s++) { DComplexMatrix2D slice = viewSlice(s); v.viewPart(s * length, length).assign(slice.vectorize()); } return v; } public double[] zSum() { double[] sum = new double[2]; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public double[] call() throws Exception { double[] sum = new double[2]; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { sum[0] += elements[idx]; sum[1] += elements[idx + 1]; idx += columnStride; } } } return sum; } }); } double[] tmp; try { for (int j = 0; j < nthreads; j++) { tmp = (double[]) futures[j].get(); sum[0] += tmp[0]; sum[1] += tmp[1]; } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { sum[0] += elements[idx]; sum[1] += elements[idx + 1]; idx += columnStride; } } } } return sum; } protected boolean haveSharedCellsRaw(DComplexMatrix3D other) { if (other instanceof SelectedDenseDComplexMatrix3D) { SelectedDenseDComplexMatrix3D otherMatrix = (SelectedDenseDComplexMatrix3D) other; return this.elements == otherMatrix.elements; } else if (other instanceof DenseDComplexMatrix3D) { DenseDComplexMatrix3D otherMatrix = (DenseDComplexMatrix3D) other; return this.elements == otherMatrix.elements; } return false; } public long index(int slice, int row, int column) { return sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride; } protected DComplexMatrix2D like2D(int rows, int columns, int rowZero, int columnZero, int rowStride, int columnStride) { return new DenseDComplexMatrix2D(rows, columns, this.elements, rowZero, columnZero, rowStride, columnStride, false); } protected DComplexMatrix3D viewSelectionLike(int[] sliceOffsets, int[] rowOffsets, int[] columnOffsets) { return new SelectedDenseDComplexMatrix3D(this.elements, sliceOffsets, rowOffsets, columnOffsets, 0); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy