All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tdouble.DoubleFactory1D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tdouble;

import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D;
import cern.colt.matrix.tdouble.impl.SparseDoubleMatrix1D;
import cern.jet.math.tdouble.DoubleFunctions;

/**
 * Factory for convenient construction of 1-d matrices holding double
 * cells. Use idioms like DoubleFactory1D.dense.make(1000) to construct
 * dense matrices, DoubleFactory1D.sparse.make(1000) to construct
 * sparse matrices.
 * 
 * If the factory is used frequently it might be useful to streamline the
 * notation. For example by aliasing:
 * 
 * 
 * 
* *
 *  DoubleFactory1D F = DoubleFactory1D.dense;
 *  F.make(1000);
 *  F.descending(10);
 *  F.random(3);
 *  ...
 * 
* *
* * @author [email protected] * @version 1.0, 09/24/99 */ public class DoubleFactory1D extends cern.colt.PersistentObject { private static final long serialVersionUID = 1L; /** * A factory producing dense matrices. */ public static final DoubleFactory1D dense = new DoubleFactory1D(); /** * A factory producing sparse matrices. */ public static final DoubleFactory1D sparse = new DoubleFactory1D(); /** * Makes this class non instantiable, but still let's others inherit from * it. */ protected DoubleFactory1D() { } /** * C = A||B; Constructs a new matrix which is the concatenation of two other * matrices. Example: 0 1 append 3 4 --> 0 1 3 4. */ public DoubleMatrix1D append(DoubleMatrix1D A, DoubleMatrix1D B) { // concatenate DoubleMatrix1D matrix = make((int) (A.size() + B.size())); matrix.viewPart(0, (int) A.size()).assign(A); matrix.viewPart((int) A.size(), (int) B.size()).assign(B); return matrix; } /** * Constructs a matrix with cells having ascending values. For debugging * purposes. Example: 0 1 2 */ public DoubleMatrix1D ascending(int size) { return descending(size).assign(DoubleFunctions.chain(DoubleFunctions.neg, DoubleFunctions.minus(size))); } /** * Constructs a matrix with cells having descending values. For debugging * purposes. Example: 2 1 0 */ public DoubleMatrix1D descending(int size) { DoubleMatrix1D matrix = make(size); int v = 0; for (int i = size; --i >= 0;) { matrix.setQuick(i, v++); } return matrix; } /** * Constructs a matrix from the values of the given list. The values are * copied. So subsequent changes in values are not reflected in the * matrix, and vice-versa. * * @param values * The values to be filled into the new matrix. * @return a new matrix. */ public DoubleMatrix1D make(cern.colt.list.tdouble.AbstractDoubleList values) { int size = values.size(); DoubleMatrix1D vector = make(size); for (int i = size; --i >= 0;) vector.set(i, values.get(i)); return vector; } /** * Constructs a matrix with the given cell values. The values are copied. So * subsequent changes in values are not reflected in the matrix, * and vice-versa. * * @param values * The values to be filled into the new matrix. */ public DoubleMatrix1D make(double[] values) { if (this == sparse) return new SparseDoubleMatrix1D(values); else return new DenseDoubleMatrix1D(values); } /** * Constructs a matrix which is the concatenation of all given parts. Cells * are copied. */ public DoubleMatrix1D make(DoubleMatrix1D[] parts) { if (parts.length == 0) return make(0); int size = 0; for (int i = 0; i < parts.length; i++) size += parts[i].size(); DoubleMatrix1D vector = make(size); size = 0; for (int i = 0; i < parts.length; i++) { vector.viewPart(size, (int) parts[i].size()).assign(parts[i]); size += parts[i].size(); } return vector; } /** * Constructs a matrix with the given shape, each cell initialized with * zero. */ public DoubleMatrix1D make(int size) { if (this == sparse) return new SparseDoubleMatrix1D(size); return new DenseDoubleMatrix1D(size); } /** * Constructs a matrix with the given shape, each cell initialized with the * given value. */ public DoubleMatrix1D make(int size, double initialValue) { return make(size).assign(initialValue); } /** * Constructs a matrix with uniformly distributed values in (0,1) * (exclusive). */ public DoubleMatrix1D random(int size) { return make(size).assign(cern.jet.math.tdouble.DoubleFunctions.random()); } /** * C = A||A||..||A; Constructs a new matrix which is concatenated * repeat times. Example: * *
     * 	 0 1
     * 	 repeat(3) -->
     * 	 0 1 0 1 0 1
     * 
     * 
*/ public DoubleMatrix1D repeat(DoubleMatrix1D A, int repeat) { int size = (int) A.size(); DoubleMatrix1D matrix = make(repeat * size); for (int i = repeat; --i >= 0;) { matrix.viewPart(size * i, size).assign(A); } return matrix; } /** * Constructs a randomly sampled matrix with the given shape. Randomly picks * exactly Math.round(size*nonZeroFraction) cells and initializes * them to value, all the rest will be initialized to zero. Note * that this is not the same as setting each cell with probability * nonZeroFraction to value. * * @throws IllegalArgumentException * if nonZeroFraction < 0 || nonZeroFraction > 1. * @see cern.jet.random.tdouble.sampling.DoubleRandomSampler */ public DoubleMatrix1D sample(int size, double value, double nonZeroFraction) { double epsilon = 1e-09; if (nonZeroFraction < 0 - epsilon || nonZeroFraction > 1 + epsilon) throw new IllegalArgumentException(); if (nonZeroFraction < 0) nonZeroFraction = 0; if (nonZeroFraction > 1) nonZeroFraction = 1; DoubleMatrix1D matrix = make(size); int n = (int) Math.round(size * nonZeroFraction); if (n == 0) return matrix; cern.jet.random.tdouble.sampling.DoubleRandomSamplingAssistant sampler = new cern.jet.random.tdouble.sampling.DoubleRandomSamplingAssistant( n, size, new cern.jet.random.tdouble.engine.DoubleMersenneTwister()); for (int i = size; --i >= 0;) { if (sampler.sampleNextElement()) { matrix.setQuick(i, value); } } return matrix; } /** * Constructs a list from the given matrix. The values are copied. So * subsequent changes in values are not reflected in the list, and * vice-versa. * * @param values * The values to be filled into the new list. * @return a new list. */ public cern.colt.list.tdouble.DoubleArrayList toList(DoubleMatrix1D values) { int size = (int) values.size(); cern.colt.list.tdouble.DoubleArrayList list = new cern.colt.list.tdouble.DoubleArrayList(size); list.setSize(size); for (int i = size; --i >= 0;) list.setQuick(i, values.get(i)); return list; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy