cern.colt.matrix.tdouble.DoubleMatrix1D Maven / Gradle / Ivy
Show all versions of parallelcolt Show documentation
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.tdouble;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import cern.colt.list.tdouble.DoubleArrayList;
import cern.colt.list.tint.IntArrayList;
import cern.colt.matrix.AbstractMatrix1D;
import cern.jet.math.tdouble.DoubleFunctions;
import edu.emory.mathcs.utils.ConcurrencyUtils;
/**
* Abstract base class for 1-d matrices (aka vectors) holding
* double elements. First see the package summary and javadoc tree view to get the broad picture.
*
* A matrix has a number of cells (its size), which are assigned upon
* instance construction. Elements are accessed via zero based indexes. Legal
* indexes are of the form [0..size()-1]. Any attempt to access an
* element at a coordinate index<0 || index>=size() will throw an
* IndexOutOfBoundsException.
*
* @author [email protected]
* @version 1.0, 09/24/99
*
* @author Piotr Wendykier ([email protected])
*
*/
public abstract class DoubleMatrix1D extends AbstractMatrix1D {
private static final long serialVersionUID = 1L;
/**
* Makes this class non instantiable, but still let's others inherit from
* it.
*/
protected DoubleMatrix1D() {
}
/**
* Applies a function to each cell and aggregates the results. Returns a
* value v such that v==a(size()) where
* a(i) == aggr( a(i-1), f(get(i)) ) and terminators are
* a(1) == f(get(0)), a(0)==Double.NaN.
*
* Example:
*
*
* cern.jet.math.Functions F = cern.jet.math.Functions.functions;
* matrix = 0 1 2 3
*
* // Sum( x[i]*x[i] )
* matrix.aggregate(F.plus,F.square);
* --> 14
*
*
*
* For further examples, see the package doc.
*
* @param aggr
* an aggregation function taking as first argument the current
* aggregation and as second argument the transformed current
* cell value.
* @param f
* a function transforming the current cell value.
* @return the aggregated measure.
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public double aggregate(final cern.colt.function.tdouble.DoubleDoubleFunction aggr,
final cern.colt.function.tdouble.DoubleFunction f) {
if (size == 0)
return Double.NaN;
double a = f.apply(getQuick(0));
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public Double call() throws Exception {
double a = f.apply(getQuick(firstIdx));
for (int i = firstIdx + 1; i < lastIdx; i++) {
a = aggr.apply(a, f.apply(getQuick(i)));
}
return Double.valueOf(a);
}
});
}
a = ConcurrencyUtils.waitForCompletion(futures, aggr);
} else {
for (int i = 1; i < size; i++) {
a = aggr.apply(a, f.apply(getQuick(i)));
}
}
return a;
}
/**
*
* Applies a function to all cells with a given indexes and aggregates the
* results.
*
* @param aggr
* an aggregation function taking as first argument the current
* aggregation and as second argument the transformed current
* cell value.
* @param f
* a function transforming the current cell value.
* @param indexList
* indexes.
*
* @return the aggregated measure.
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public double aggregate(final cern.colt.function.tdouble.DoubleDoubleFunction aggr,
final cern.colt.function.tdouble.DoubleFunction f, final IntArrayList indexList) {
if (size() == 0)
return Double.NaN;
final int size = indexList.size();
final int[] indexElements = indexList.elements();
double a = 0;
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public Double call() throws Exception {
double a = f.apply(getQuick(indexElements[firstIdx]));
double elem;
for (int i = firstIdx + 1; i < lastIdx; i++) {
elem = getQuick(indexElements[i]);
a = aggr.apply(a, f.apply(elem));
}
return a;
}
});
}
a = ConcurrencyUtils.waitForCompletion(futures, aggr);
} else {
double elem;
a = f.apply(getQuick(indexElements[0]));
for (int i = 1; i < size; i++) {
elem = getQuick(indexElements[i]);
a = aggr.apply(a, f.apply(elem));
}
}
return a;
}
/**
* Applies a function to each corresponding cell of two matrices and
* aggregates the results. Returns a value v such that
* v==a(size()) where
* a(i) == aggr( a(i-1), f(get(i),other.get(i)) ) and terminators
* are a(1) == f(get(0),other.get(0)), a(0)==Double.NaN.
*
* Example:
*
*
* cern.jet.math.Functions F = cern.jet.math.Functions.functions;
* x = 0 1 2 3
* y = 0 1 2 3
*
* // Sum( x[i]*y[i] )
* x.aggregate(y, F.plus, F.mult);
* --> 14
*
* // Sum( (x[i]+y[i])ˆ2 )
* x.aggregate(y, F.plus, F.chain(F.square,F.plus));
* --> 56
*
*
*
* For further examples, see the package doc.
*
* @param aggr
* an aggregation function taking as first argument the current
* aggregation and as second argument the transformed current
* cell values.
* @param f
* a function transforming the current cell values.
* @return the aggregated measure.
* @throws IllegalArgumentException
* if size() != other.size().
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public double aggregate(final DoubleMatrix1D other, final cern.colt.function.tdouble.DoubleDoubleFunction aggr,
final cern.colt.function.tdouble.DoubleDoubleFunction f) {
checkSize(other);
if (size == 0)
return Double.NaN;
double a = f.apply(getQuick(0), other.getQuick(0));
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public Double call() throws Exception {
double a = f.apply(getQuick(firstIdx), other.getQuick(firstIdx));
for (int i = firstIdx + 1; i < lastIdx; i++) {
a = aggr.apply(a, f.apply(getQuick(i), other.getQuick(i)));
}
return Double.valueOf(a);
}
});
}
a = ConcurrencyUtils.waitForCompletion(futures, aggr);
} else {
for (int i = 1; i < size; i++) {
a = aggr.apply(a, f.apply(getQuick(i), other.getQuick(i)));
}
}
return a;
}
/**
* Assigns the result of a function to each cell;
* x[i] = function(x[i]). (Iterates downwards from
* [size()-1] to [0]).
*
* Example:
*
*
* // change each cell to its sine
* matrix = 0.5 1.5 2.5 3.5
* matrix.assign(cern.jet.math.Functions.sin);
* -->
* matrix == 0.479426 0.997495 0.598472 -0.350783
*
*
*
* For further examples, see the package doc.
*
* @param f
* a function object taking as argument the current cell's value.
* @return this (for convenience only).
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public DoubleMatrix1D assign(final cern.colt.function.tdouble.DoubleFunction f) {
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
setQuick(i, f.apply(getQuick(i)));
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
setQuick(i, f.apply(getQuick(i)));
}
}
return this;
}
/**
* Assigns the result of a function to all cells that satisfy a condition.
*
* @param cond
* a condition.
*
* @param f
* a function object.
* @return this (for convenience only).
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public DoubleMatrix1D assign(final cern.colt.function.tdouble.DoubleProcedure cond,
final cern.colt.function.tdouble.DoubleFunction f) {
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
double elem;
for (int i = firstIdx; i < lastIdx; i++) {
elem = getQuick(i);
if (cond.apply(elem) == true) {
setQuick(i, f.apply(elem));
}
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
double elem;
for (int i = 0; i < size; i++) {
elem = getQuick(i);
if (cond.apply(elem) == true) {
setQuick(i, f.apply(elem));
}
}
}
return this;
}
/**
* Assigns a value to all cells that satisfy a condition.
*
* @param cond
* a condition.
*
* @param value
* a value.
* @return this (for convenience only).
*
*/
public DoubleMatrix1D assign(final cern.colt.function.tdouble.DoubleProcedure cond, final double value) {
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
double elem;
for (int i = firstIdx; i < lastIdx; i++) {
elem = getQuick(i);
if (cond.apply(elem) == true) {
setQuick(i, value);
}
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
double elem;
for (int i = 0; i < size; i++) {
elem = getQuick(i);
if (cond.apply(elem) == true) {
setQuick(i, value);
}
}
}
return this;
}
/**
* Sets all cells to the state specified by value.
*
* @param value
* the value to be filled into the cells.
* @return this (for convenience only).
*/
public DoubleMatrix1D assign(final double value) {
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
setQuick(i, value);
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
setQuick(i, value);
}
}
return this;
}
/**
* Sets all cells to the state specified by values. values
* is required to have the same number of cells as the receiver.
*
* The values are copied. So subsequent changes in values are not
* reflected in the matrix, and vice-versa.
*
* @param values
* the values to be filled into the cells.
* @return this (for convenience only).
* @throws IllegalArgumentException
* if values.length != size().
*/
public DoubleMatrix1D assign(final double[] values) {
if (values.length != size)
throw new IllegalArgumentException("Must have same number of cells: length=" + values.length + "size()="
+ size());
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
setQuick(i, values[i]);
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
setQuick(i, values[i]);
}
}
return this;
}
/**
* Replaces all cell values of the receiver with the values of another
* matrix. Both matrices must have the same size. If both matrices share the
* same cells (as is the case if they are views derived from the same
* matrix) and intersect in an ambiguous way, then replaces as if
* using an intermediate auxiliary deep copy of other.
*
* @param other
* the source matrix to copy from (may be identical to the
* receiver).
* @return this (for convenience only).
* @throws IllegalArgumentException
* if size() != other.size().
*/
public DoubleMatrix1D assign(DoubleMatrix1D other) {
if (other == this)
return this;
checkSize(other);
final DoubleMatrix1D source;
if (haveSharedCells(other)) {
source = other.copy();
} else {
source = other;
}
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
setQuick(i, source.getQuick(i));
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
setQuick(i, source.getQuick(i));
}
}
return this;
}
/**
* Assigns the result of a function to each cell;
* x[i] = function(x[i],y[i]).
*
* Example:
*
*
* // assign x[i] = x[i]<sup>y[i]</sup>
* m1 = 0 1 2 3;
* m2 = 0 2 4 6;
* m1.assign(m2, cern.jet.math.Functions.pow);
* -->
* m1 == 1 1 16 729
*
*
*
* For further examples, see the package doc.
*
* @param y
* the secondary matrix to operate on.
* @param function
* a function object taking as first argument the current cell's
* value of this, and as second argument the current
* cell's value of y,
* @return this (for convenience only).
* @throws IllegalArgumentException
* if size() != y.size().
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public DoubleMatrix1D assign(final DoubleMatrix1D y, final cern.colt.function.tdouble.DoubleDoubleFunction function) {
checkSize(y);
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
setQuick(i, function.apply(getQuick(i), y.getQuick(i)));
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
setQuick(i, function.apply(getQuick(i), y.getQuick(i)));
}
}
return this;
}
/**
* Assigns the result of a function to each cell;
* x[i] = function(x[i],y[i]). (Iterates downwards from
* [size()-1] to [0]).
*
* Example:
*
*
* // assign x[i] = x[i]<sup>y[i]</sup>
* m1 = 0 1 2 3;
* m2 = 0 2 4 6;
* m1.assign(m2, cern.jet.math.Functions.pow);
* -->
* m1 == 1 1 16 729
*
* // for non-standard functions there is no shortcut:
* m1.assign(m2,
* new DoubleDoubleFunction() {
* public double apply(double x, double y) { return Math.pow(x,y); }
* }
* );
*
*
*
* For further examples, see the package doc.
*
* @param y
* the secondary matrix to operate on.
* @param function
* a function object taking as first argument the current cell's
* value of this, and as second argument the current
* cell's value of y.
* @param nonZeroIndexes
* list of indexes of non-zero values
* @return this (for convenience only).
* @throws IllegalArgumentException
* if size() != y.size().
* @see cern.jet.math.tdouble.DoubleFunctions
*/
public DoubleMatrix1D assign(DoubleMatrix1D y, cern.colt.function.tdouble.DoubleDoubleFunction function,
cern.colt.list.tint.IntArrayList nonZeroIndexes) {
checkSize(y);
int[] nonZeroElements = nonZeroIndexes.elements();
// specialized for speed
if (function == cern.jet.math.tdouble.DoubleFunctions.mult) { // x[i] = x[i] * y[i]
int j = 0;
for (int index = nonZeroIndexes.size(); --index >= 0;) {
int i = nonZeroElements[index];
for (; j < i; j++)
setQuick(j, 0); // x[i] = 0 for all zeros
setQuick(i, getQuick(i) * y.getQuick(i)); // x[i] * y[i] for all nonZeros
j++;
}
} else if (function instanceof cern.jet.math.tdouble.DoublePlusMultSecond) {
double multiplicator = ((cern.jet.math.tdouble.DoublePlusMultSecond) function).multiplicator;
if (multiplicator == 0) { // x[i] = x[i] + 0*y[i]
return this;
} else if (multiplicator == 1) { // x[i] = x[i] + y[i]
for (int index = nonZeroIndexes.size(); --index >= 0;) {
int i = nonZeroElements[index];
setQuick(i, getQuick(i) + y.getQuick(i));
}
} else if (multiplicator == -1) { // x[i] = x[i] - y[i]
for (int index = nonZeroIndexes.size(); --index >= 0;) {
int i = nonZeroElements[index];
setQuick(i, getQuick(i) - y.getQuick(i));
}
} else { // the general case x[i] = x[i] + mult*y[i]
for (int index = nonZeroIndexes.size(); --index >= 0;) {
int i = nonZeroElements[index];
setQuick(i, getQuick(i) + multiplicator * y.getQuick(i));
}
}
} else { // the general case x[i] = f(x[i],y[i])
return assign(y, function);
}
return this;
}
/**
* Returns the number of cells having non-zero values; ignores tolerance.
*
* @return the number of cells having non-zero values.
*/
public int cardinality() {
int cardinality = 0;
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
Integer[] results = new Integer[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public Integer call() throws Exception {
int cardinality = 0;
for (int i = firstIdx; i < lastIdx; i++) {
if (getQuick(i) != 0)
cardinality++;
}
return cardinality;
}
});
}
try {
for (int j = 0; j < nthreads; j++) {
results[j] = (Integer) futures[j].get();
}
cardinality = results[0];
for (int j = 1; j < nthreads; j++) {
cardinality += results[j];
}
} catch (ExecutionException ex) {
ex.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
for (int i = 0; i < size; i++) {
if (getQuick(i) != 0)
cardinality++;
}
}
return cardinality;
}
/**
* Constructs and returns a deep copy of the receiver.
*
* Note that the returned matrix is an independent deep copy. The
* returned matrix is not backed by this matrix, so changes in the returned
* matrix are not reflected in this matrix, and vice-versa.
*
* @return a deep copy of the receiver.
*/
public DoubleMatrix1D copy() {
DoubleMatrix1D copy = like();
copy.assign(this);
return copy;
}
/**
* Returns the elements of this matrix.
*
* @return the elements
*/
public abstract Object elements();
/**
* Returns whether all cells are equal to the given value.
*
* @param value
* the value to test against.
* @return true if all cells are equal to the given value,
* false otherwise.
*/
public boolean equals(double value) {
return cern.colt.matrix.tdouble.algo.DoubleProperty.DEFAULT.equals(this, value);
}
/**
* Compares this object against the specified object. The result is
* true
if and only if the argument is not null
* and is at least a DoubleMatrix1D
object that has the same
* sizes as the receiver and has exactly the same values at the same
* indexes.
*
* @param obj
* the object to compare with.
* @return true
if the objects are the same; false
* otherwise.
*/
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (!(obj instanceof DoubleMatrix1D))
return false;
return cern.colt.matrix.tdouble.algo.DoubleProperty.DEFAULT.equals(this, (DoubleMatrix1D) obj);
}
/**
* Returns the matrix cell value at coordinate index.
*
* @param index
* the index of the cell.
* @return the value of the specified cell.
* @throws IndexOutOfBoundsException
* if index<0 || index>=size().
*/
public double get(int index) {
if (index < 0 || index >= size)
checkIndex(index);
return getQuick(index);
}
/**
* Return the maximum value of this matrix together with its location
*
* @return { maximum_value, location };
*/
public double[] getMaxLocation() {
int location = 0;
double maxValue = 0;
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
double[][] results = new double[nthreads][2];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public double[] call() throws Exception {
int location = firstIdx;
double maxValue = getQuick(location);
double elem;
for (int i = firstIdx + 1; i < lastIdx; i++) {
elem = getQuick(i);
if (maxValue < elem) {
maxValue = elem;
location = i;
}
}
return new double[] { maxValue, location };
}
});
}
try {
for (int j = 0; j < nthreads; j++) {
results[j] = (double[]) futures[j].get();
}
maxValue = results[0][0];
location = (int) results[0][1];
for (int j = 1; j < nthreads; j++) {
if (maxValue < results[j][0]) {
maxValue = results[j][0];
location = (int) results[j][1];
}
}
} catch (ExecutionException ex) {
ex.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
maxValue = getQuick(location);
double elem;
for (int i = 1; i < size(); i++) {
elem = getQuick(i);
if (maxValue < elem) {
maxValue = elem;
location = i;
}
}
}
return new double[] { maxValue, location };
}
/**
* Return the minimum value of this matrix together with its location
*
* @return { minimum_value, location };
*/
public double[] getMinLocation() {
int location = 0;
double minValue = 0;
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
double[][] results = new double[nthreads][2];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public double[] call() throws Exception {
int location = firstIdx;
double minValue = getQuick(location);
double elem;
for (int i = firstIdx + 1; i < lastIdx; i++) {
elem = getQuick(i);
if (minValue > elem) {
minValue = elem;
location = i;
}
}
return new double[] { minValue, location };
}
});
}
try {
for (int j = 0; j < nthreads; j++) {
results[j] = (double[]) futures[j].get();
}
minValue = results[0][0];
location = (int) results[0][1];
for (int j = 1; j < nthreads; j++) {
if (minValue > results[j][0]) {
minValue = results[j][0];
location = (int) results[j][1];
}
}
} catch (ExecutionException ex) {
ex.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
minValue = getQuick(location);
double elem;
for (int i = 1; i < size(); i++) {
elem = getQuick(i);
if (minValue > elem) {
minValue = elem;
location = i;
}
}
}
return new double[] { minValue, location };
}
/**
* Fills the coordinates and values of cells having negative values into the
* specified lists. Fills into the lists, starting at index 0. After this
* call returns the specified lists all have a new size, the number of
* non-zero values.
*
* @param indexList
* the list to be filled with indexes, can have any size.
* @param valueList
* the list to be filled with values, can have any size.
*/
public void getNegativeValues(final IntArrayList indexList, final DoubleArrayList valueList) {
boolean fillIndexList = indexList != null;
boolean fillValueList = valueList != null;
if (fillIndexList)
indexList.clear();
if (fillValueList)
valueList.clear();
int rem = size % 2;
if (rem == 1) {
double value = getQuick(0);
if (value < 0) {
if (fillIndexList) {
indexList.add(0);
}
if (fillValueList) {
valueList.add(value);
}
}
}
for (int i = rem; i < size; i += 2) {
double value = getQuick(i);
if (value < 0) {
if (fillIndexList) {
indexList.add(i);
}
if (fillValueList) {
valueList.add(value);
}
}
value = getQuick(i + 1);
if (value < 0) {
if (fillIndexList) {
indexList.add(i + 1);
}
if (fillValueList) {
valueList.add(value);
}
}
}
}
/**
* Fills the coordinates and values of cells having non-zero values into the
* specified lists. Fills into the lists, starting at index 0. After this
* call returns the specified lists all have a new size, the number of
* non-zero values.
*
* In general, fill order is unspecified. This implementation fills
* like: for (index = 0..size()-1) do ... . However, subclasses
* are free to us any other order, even an order that may change over time
* as cell values are changed. (Of course, result lists indexes are
* guaranteed to correspond to the same cell).
*
* Example:
*
*
* 0, 0, 8, 0, 7
* -->
* indexList = (2,4)
* valueList = (8,7)
*
*
*
* In other words, get(2)==8, get(4)==7.
*
* @param indexList
* the list to be filled with indexes, can have any size.
* @param valueList
* the list to be filled with values, can have any size.
*/
public void getNonZeros(final IntArrayList indexList, final DoubleArrayList valueList) {
boolean fillIndexList = indexList != null;
boolean fillValueList = valueList != null;
if (fillIndexList)
indexList.clear();
if (fillValueList)
valueList.clear();
int rem = size % 2;
if (rem == 1) {
double value = getQuick(0);
if (value != 0) {
if (fillIndexList) {
indexList.add(0);
}
if (fillValueList) {
valueList.add(value);
}
}
}
for (int i = rem; i < size; i += 2) {
double value = getQuick(i);
if (value != 0) {
if (fillIndexList) {
indexList.add(i);
}
if (fillValueList) {
valueList.add(value);
}
}
value = getQuick(i + 1);
if (value != 0) {
if (fillIndexList) {
indexList.add(i + 1);
}
if (fillValueList) {
valueList.add(value);
}
}
}
}
/**
* Fills the coordinates and values of the first maxCardinality
* cells having non-zero values into the specified lists. Fills into the
* lists, starting at index 0. After this call returns the specified lists
* all have a new size, the number of non-zero values.
*
* In general, fill order is unspecified. This implementation fills
* like: for (index = 0..size()-1) do ... . However, subclasses
* are free to us any other order, even an order that may change over time
* as cell values are changed. (Of course, result lists indexes are
* guaranteed to correspond to the same cell).
*
* Example:
*
*
* 0, 0, 8, 0, 7
* -->
* indexList = (2,4)
* valueList = (8,7)
*
*
*
* In other words, get(2)==8, get(4)==7.
*
* @param indexList
* the list to be filled with indexes, can have any size.
* @param valueList
* the list to be filled with values, can have any size.
* @param maxCardinality
* maximal cardinality
*/
public void getNonZeros(IntArrayList indexList, DoubleArrayList valueList, int maxCardinality) {
boolean fillIndexList = indexList != null;
boolean fillValueList = valueList != null;
if (fillIndexList)
indexList.clear();
if (fillValueList)
valueList.clear();
int s = size;
int currentSize = 0;
for (int i = 0; i < s; i++) {
double value = getQuick(i);
if (value != 0) {
if (fillIndexList)
indexList.add(i);
if (fillValueList)
valueList.add(value);
currentSize++;
}
if (currentSize >= maxCardinality) {
break;
}
}
}
/**
* Fills the coordinates and values of cells having positive values into the
* specified lists. Fills into the lists, starting at index 0. After this
* call returns the specified lists all have a new size, the number of
* non-zero values.
*
* @param indexList
* the list to be filled with indexes, can have any size.
* @param valueList
* the list to be filled with values, can have any size.
*/
public void getPositiveValues(final IntArrayList indexList, final DoubleArrayList valueList) {
boolean fillIndexList = indexList != null;
boolean fillValueList = valueList != null;
if (fillIndexList)
indexList.clear();
if (fillValueList)
valueList.clear();
int rem = size % 2;
if (rem == 1) {
double value = getQuick(0);
if (value > 0) {
if (fillIndexList) {
indexList.add(0);
}
if (fillValueList) {
valueList.add(value);
}
}
}
for (int i = rem; i < size; i += 2) {
double value = getQuick(i);
if (value > 0) {
if (fillIndexList) {
indexList.add(i);
}
if (fillValueList) {
valueList.add(value);
}
}
value = getQuick(i + 1);
if (value > 0) {
if (fillIndexList) {
indexList.add(i + 1);
}
if (fillValueList) {
valueList.add(value);
}
}
}
}
/**
* Returns the matrix cell value at coordinate index.
*
*
* Provided with invalid parameters this method may return invalid objects
* without throwing any exception. You should only use this method when
* you are absolutely sure that the coordinate is within bounds.
* Precondition (unchecked): index<0 || index>=size().
*
* @param index
* the index of the cell.
* @return the value of the specified cell.
*/
public abstract double getQuick(int index);
/**
* Construct and returns a new empty matrix of the same dynamic type
* as the receiver, having the same size. For example, if the receiver is an
* instance of type DenseDoubleMatrix1D the new matrix must also be
* of type DenseDoubleMatrix1D, if the receiver is an instance of
* type SparseDoubleMatrix1D the new matrix must also be of type
* SparseDoubleMatrix1D, etc. In general, the new matrix should
* have internal parametrization as similar as possible.
*
* @return a new empty matrix of the same dynamic type.
*/
public DoubleMatrix1D like() {
return like(size);
}
/**
* Construct and returns a new empty matrix of the same dynamic type
* as the receiver, having the specified size. For example, if the receiver
* is an instance of type DenseDoubleMatrix1D the new matrix must
* also be of type DenseDoubleMatrix1D, if the receiver is an
* instance of type SparseDoubleMatrix1D the new matrix must also
* be of type SparseDoubleMatrix1D, etc. In general, the new matrix
* should have internal parametrization as similar as possible.
*
* @param size
* the number of cell the matrix shall have.
* @return a new empty matrix of the same dynamic type.
*/
public abstract DoubleMatrix1D like(int size);
/**
* Construct and returns a new 2-d matrix of the corresponding dynamic
* type, entirelly independent of the receiver. For example, if the
* receiver is an instance of type DenseDoubleMatrix1D the new
* matrix must be of type DenseDoubleMatrix2D, if the receiver is
* an instance of type SparseDoubleMatrix1D the new matrix must be
* of type SparseDoubleMatrix2D, etc.
*
* @param rows
* the number of rows the matrix shall have.
* @param columns
* the number of columns the matrix shall have.
* @return a new matrix of the corresponding dynamic type.
*/
public abstract DoubleMatrix2D like2D(int rows, int columns);
/**
* Normalizes this matrix, i.e. makes the sum of all elements equal to 1.0
* If the matrix contains negative elements then all the values are shifted
* to ensure non-negativity.
*/
public void normalize() {
double min = getMinLocation()[0];
if (min < 0) {
assign(DoubleFunctions.minus(min));
}
if (getMaxLocation()[0] == 0) {
assign(1.0 / size());
} else {
double sumScaleFactor = zSum();
sumScaleFactor = 1.0 / sumScaleFactor;
assign(DoubleFunctions.mult(sumScaleFactor));
}
}
/**
* Returns new DoubleMatrix2D of size rows x columns whose elements are
* taken column-wise from this matrix.
*
* @param rows
* number of rows
* @param columns
* number of columns
* @return new 2D matrix with columns being the elements of this matrix.
*/
public abstract DoubleMatrix2D reshape(int rows, int columns);
/**
* Returns new DoubleMatrix3D of size slices x rows x columns, whose
* elements are taken column-wise from this matrix.
*
* @param rows
* number of rows
* @param columns
* number of columns
* @return new 2D matrix with columns being the elements of this matrix.
*/
public abstract DoubleMatrix3D reshape(int slices, int rows, int columns);
/**
* Sets the matrix cell at coordinate index to the specified value.
*
* @param index
* the index of the cell.
* @param value
* the value to be filled into the specified cell.
* @throws IndexOutOfBoundsException
* if index<0 || index>=size().
*/
public void set(int index, double value) {
if (index < 0 || index >= size)
checkIndex(index);
setQuick(index, value);
}
/**
* Sets the matrix cell at coordinate index to the specified value.
*
*
* Provided with invalid parameters this method may access illegal indexes
* without throwing any exception. You should only use this method when
* you are absolutely sure that the coordinate is within bounds.
* Precondition (unchecked): index<0 || index>=size().
*
* @param index
* the index of the cell.
* @param value
* the value to be filled into the specified cell.
*/
public abstract void setQuick(int index, double value);
/**
* Swaps each element this[i] with other[i].
*
* @throws IllegalArgumentException
* if size() != other.size().
*/
public void swap(final DoubleMatrix1D other) {
checkSize(other);
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
double tmp = getQuick(i);
setQuick(i, other.getQuick(i));
other.setQuick(i, tmp);
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
double tmp = getQuick(i);
setQuick(i, other.getQuick(i));
other.setQuick(i, tmp);
}
}
}
/**
* Constructs and returns a 1-dimensional array containing the cell values.
* The values are copied. So subsequent changes in values are not
* reflected in the matrix, and vice-versa. The returned array
* values has the form
* for (int i=0; i < size(); i++) values[i] = get(i);
*
* @return an array filled with the values of the cells.
*/
public double[] toArray() {
double[] values = new double[size];
toArray(values);
return values;
}
/**
* Fills the cell values into the specified 1-dimensional array. The values
* are copied. So subsequent changes in values are not reflected in
* the matrix, and vice-versa. After this call returns the array
* values has the form
* for (int i=0; i < size(); i++) values[i] = get(i);
*
* @throws IllegalArgumentException
* if values.length < size().
*/
public void toArray(final double[] values) {
if (values.length < size)
throw new IllegalArgumentException("values too small");
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, size);
Future>[] futures = new Future[nthreads];
int k = size / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Runnable() {
public void run() {
for (int i = firstIdx; i < lastIdx; i++) {
values[i] = getQuick(i);
}
}
});
}
ConcurrencyUtils.waitForCompletion(futures);
} else {
for (int i = 0; i < size; i++) {
values[i] = getQuick(i);
}
}
}
/**
* Returns a string representation using default formatting.
*
* @see cern.colt.matrix.tdouble.algo.DoubleFormatter
*/
public String toString() {
return new cern.colt.matrix.tdouble.algo.DoubleFormatter().toString(this);
}
/**
* Constructs and returns a new flip view. What used to be index
* 0 is now index size()-1, ..., what used to be index
* size()-1 is now index 0. The returned view is backed by
* this matrix, so changes in the returned view are reflected in this
* matrix, and vice-versa.
*
* @return a new flip view.
*/
public DoubleMatrix1D viewFlip() {
return (DoubleMatrix1D) (view().vFlip());
}
/**
* Constructs and returns a new sub-range view that is a
* width sub matrix starting at index.
*
* Operations on the returned view can only be applied to the restricted
* range. Any attempt to access coordinates not contained in the view will
* throw an IndexOutOfBoundsException.
*
* Note that the view is really just a range restriction: The
* returned matrix is backed by this matrix, so changes in the returned
* matrix are reflected in this matrix, and vice-versa.
*
* The view contains the cells from index..index+width-1. and has
* view.size() == width. A view's legal coordinates are again zero
* based, as usual. In other words, legal coordinates of the view are
* 0 .. view.size()-1==width-1. As usual, any attempt to access a
* cell at other coordinates will throw an
* IndexOutOfBoundsException.
*
* @param index
* The index of the first cell.
* @param width
* The width of the range.
* @throws IndexOutOfBoundsException
* if index<0 || width<0 || index+width>size().
* @return the new view.
*
*/
public DoubleMatrix1D viewPart(int index, int width) {
return (DoubleMatrix1D) (view().vPart(index, width));
}
/**
* Constructs and returns a new selection view that is a matrix
* holding the cells matching the given condition. Applies the condition to
* each cell and takes only those cells where
* condition.apply(get(i)) yields true.
*
* Example:
*
*
* // extract and view all cells with even value
* matrix = 0 1 2 3
* matrix.viewSelection(
* new DoubleProcedure() {
* public final boolean apply(double a) { return a % 2 == 0; }
* }
* );
* -->
* matrix == 0 2
*
*
*
* For further examples, see the package doc. The returned
* view is backed by this matrix, so changes in the returned view are
* reflected in this matrix, and vice-versa.
*
* @param condition
* The condition to be matched.
* @return the new view.
*/
public DoubleMatrix1D viewSelection(cern.colt.function.tdouble.DoubleProcedure condition) {
IntArrayList matches = new IntArrayList();
for (int i = 0; i < size; i++) {
if (condition.apply(getQuick(i)))
matches.add(i);
}
matches.trimToSize();
return viewSelection(matches.elements());
}
/**
* Constructs and returns a new selection view that is a matrix
* holding the indicated cells. There holds
* view.size() == indexes.length and
* view.get(i) == this.get(indexes[i]). Indexes can occur multiple
* times and can be in arbitrary order.
*
* Example:
*
*
* this = (0,0,8,0,7)
* indexes = (0,2,4,2)
* -->
* view = (0,8,7,8)
*
*
*
* Note that modifying indexes after this call has returned has no
* effect on the view. The returned view is backed by this matrix, so
* changes in the returned view are reflected in this matrix, and
* vice-versa.
*
* @param indexes
* The indexes of the cells that shall be visible in the new
* view. To indicate that all cells shall be visible,
* simply set this parameter to null.
* @return the new view.
* @throws IndexOutOfBoundsException
* if !(0 <= indexes[i] < size()) for any
* i=0..indexes.length()-1.
*/
public DoubleMatrix1D viewSelection(int[] indexes) {
// check for "all"
if (indexes == null) {
indexes = new int[size];
for (int i = 0; i < size; i++)
indexes[i] = i;
}
checkIndexes(indexes);
int[] offsets = new int[indexes.length];
for (int i = 0; i < indexes.length; i++) {
offsets[i] = (int) index(indexes[i]);
}
return viewSelectionLike(offsets);
}
/**
* Sorts the vector into ascending order, according to the natural
* ordering. This sort is guaranteed to be stable. For further
* information, see
* {@link cern.colt.matrix.tdouble.algo.DoubleSorting#sort(DoubleMatrix1D)}.
* For more advanced sorting functionality, see
* {@link cern.colt.matrix.tdouble.algo.DoubleSorting}.
*
* @return a new sorted vector (matrix) view.
*/
public DoubleMatrix1D viewSorted() {
return cern.colt.matrix.tdouble.algo.DoubleSorting.mergeSort.sort(this);
}
/**
* Constructs and returns a new stride view which is a sub matrix
* consisting of every i-th cell. More specifically, the view has size
* this.size()/stride holding cells this.get(i*stride) for
* all i = 0..size()/stride - 1.
*
* @param stride
* the step factor.
* @throws IndexOutOfBoundsException
* if stride <= 0.
* @return the new view.
*
*/
public DoubleMatrix1D viewStrides(int stride) {
return (DoubleMatrix1D) (view().vStrides(stride));
}
/**
* Returns the dot product of two vectors x and y, which is
* Sum(x[i]*y[i]). Where x == this. Operates on cells at
* indexes 0 .. Math.min(size(),y.size()).
*
* @param y
* the second vector.
* @return the sum of products.
*/
public double zDotProduct(DoubleMatrix1D y) {
return zDotProduct(y, 0, size);
}
/**
* Returns the dot product of two vectors x and y, which is
* Sum(x[i]*y[i]). Where x == this. Operates on cells at
* indexes from .. Min(size(),y.size(),from+length)-1.
*
* @param y
* the second vector.
* @param from
* the first index to be considered.
* @param length
* the number of cells to be considered.
* @return the sum of products; zero if from<0 || length<0.
*/
public double zDotProduct(final DoubleMatrix1D y, final int from, int length) {
if (from < 0 || length <= 0)
return 0;
int tail = from + length;
if (size < tail)
tail = size;
if (y.size < tail)
tail = y.size;
length = tail - from;
double sum = 0;
int nthreads = ConcurrencyUtils.getNumberOfThreads();
if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_1D())) {
nthreads = Math.min(nthreads, length);
Future>[] futures = new Future[nthreads];
Double[] results = new Double[nthreads];
int k = length / nthreads;
for (int j = 0; j < nthreads; j++) {
final int firstIdx = j * k;
final int lastIdx = (j == nthreads - 1) ? length : firstIdx + k;
futures[j] = ConcurrencyUtils.submit(new Callable() {
public Double call() throws Exception {
double sum = 0;
int idx;
for (int k = firstIdx; k < lastIdx; k++) {
idx = k + from;
sum += getQuick(idx) * y.getQuick(idx);
}
return Double.valueOf(sum);
}
});
}
try {
for (int j = 0; j < nthreads; j++) {
results[j] = (Double) futures[j].get();
}
sum = results[0].doubleValue();
for (int j = 1; j < nthreads; j++) {
sum += results[j].doubleValue();
}
} catch (ExecutionException ex) {
ex.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
int i = tail - 1;
for (int k = length; --k >= 0; i--) {
sum += getQuick(i) * y.getQuick(i);
}
}
return sum;
}
/**
* Returns the dot product of two vectors x and y, which is
* Sum(x[i]*y[i]). Where x == this.
*
* @param y
* the second vector.
* @param nonZeroIndexes
* the indexes of cells in yhaving a non-zero value.
* @return the sum of products.
*/
public double zDotProduct(DoubleMatrix1D y, int from, int length, IntArrayList nonZeroIndexes) {
// determine minimum length
if (from < 0 || length <= 0)
return 0;
int tail = from + length;
if (size < tail)
tail = size;
if (y.size < tail)
tail = y.size;
length = tail - from;
if (length <= 0)
return 0;
IntArrayList indexesCopy = nonZeroIndexes.copy();
indexesCopy.trimToSize();
indexesCopy.quickSort();
int[] nonZeroIndexElements = indexesCopy.elements();
int index = 0;
int s = indexesCopy.size();
// skip to start
while ((index < s) && nonZeroIndexElements[index] < from)
index++;
// now the sparse dot product
int i;
double sum = 0;
while ((--length >= 0) && (index < s) && ((i = nonZeroIndexElements[index]) < tail)) {
sum += getQuick(i) * y.getQuick(i);
index++;
}
return sum;
}
/**
* Returns the sum of all cells; Sum( x[i] ).
*
* @return the sum.
*/
public double zSum() {
if (size() == 0)
return 0;
return aggregate(cern.jet.math.tdouble.DoubleFunctions.plus, cern.jet.math.tdouble.DoubleFunctions.identity);
}
/**
* Returns the number of cells having non-zero values, but at most
* maxCardinality; ignores tolerance.
*/
protected int cardinality(int maxCardinality) {
int cardinality = 0;
int i = size;
while (--i >= 0 && cardinality < maxCardinality) {
if (getQuick(i) != 0)
cardinality++;
}
return cardinality;
}
/**
* Returns the content of this matrix if it is a wrapper; or this
* otherwise. Override this method in wrappers.
*/
protected DoubleMatrix1D getContent() {
return this;
}
/**
* Returns true if both matrices share at least one identical cell.
*/
protected boolean haveSharedCells(DoubleMatrix1D other) {
if (other == null)
return false;
if (this == other)
return true;
return getContent().haveSharedCellsRaw(other.getContent());
}
/**
* Returns true if both matrices share at least one identical cell.
*/
protected boolean haveSharedCellsRaw(DoubleMatrix1D other) {
return false;
}
/**
* Constructs and returns a new view equal to the receiver. The view is a
* shallow clone. Calls clone()
and casts the result.
*
* Note that the view is not a deep copy. The returned matrix is
* backed by this matrix, so changes in the returned matrix are reflected in
* this matrix, and vice-versa.
*
* Use {@link #copy()} to construct an independent deep copy rather than a
* new view.
*
* @return a new view of the receiver.
*/
protected DoubleMatrix1D view() {
return (DoubleMatrix1D) clone();
}
/**
* Construct and returns a new selection view.
*
* @param offsets
* the offsets of the visible elements.
* @return a new view.
*/
protected abstract DoubleMatrix1D viewSelectionLike(int[] offsets);
/**
* Returns the dot product of two vectors x and y, which is
* Sum(x[i]*y[i]). Where x == this.
*
* @param y
* the second vector.
* @param nonZeroIndexes
* the indexes of cells in yhaving a non-zero value.
* @return the sum of products.
*/
protected double zDotProduct(DoubleMatrix1D y, IntArrayList nonZeroIndexes) {
return zDotProduct(y, 0, size, nonZeroIndexes);
}
}