cern.colt.matrix.tdouble.algo.solver.DoubleChebyshev Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Derived from public domain software at http://www.netlib.org/templates
*/
package cern.colt.matrix.tdouble.algo.solver;
import cern.colt.matrix.tdouble.DoubleMatrix1D;
import cern.colt.matrix.tdouble.DoubleMatrix2D;
import cern.jet.math.tdouble.DoubleFunctions;
/**
* Chebyshev solver. Solves the symmetric positive definite linear system
* Ax = b
using the Preconditioned Chebyshev Method. Chebyshev
* requires an acurate estimate on the bounds of the spectrum of the matrix.
*
* @author Templates
*/
public class DoubleChebyshev extends AbstractDoubleIterativeSolver {
/**
* Estimates for the eigenvalue of the matrix
*/
private double eigmin, eigmax;
/**
* Vectors for use in the iterative solution process
*/
private DoubleMatrix1D p, z, r, q;
/**
* Constructor for Chebyshev. Uses the given vector as template for creating
* scratch vectors. Typically, the solution or the right hand side vector
* can be passed, and the template is not modified. Eigenvalue estimates
* must also be provided
*
* @param template
* Vector to use as template for the work vectors needed in the
* solution process
* @param eigmin
* Smallest eigenvalue. Must be positive
* @param eigmax
* Largest eigenvalue. Must be positive
*/
public DoubleChebyshev(DoubleMatrix1D template, double eigmin, double eigmax) {
p = template.copy();
z = template.copy();
r = template.copy();
q = template.copy();
setEigenvalues(eigmin, eigmax);
}
/**
* Sets the eigenvalue estimates.
*
* @param eigmin
* Smallest eigenvalue. Must be positive
* @param eigmax
* Largest eigenvalue. Must be positive
*/
public void setEigenvalues(double eigmin, double eigmax) {
this.eigmin = eigmin;
this.eigmax = eigmax;
if (eigmin <= 0)
throw new IllegalArgumentException("eigmin <= 0");
if (eigmax <= 0)
throw new IllegalArgumentException("eigmax <= 0");
if (eigmin > eigmax)
throw new IllegalArgumentException("eigmin > eigmax");
}
public DoubleMatrix1D solve(DoubleMatrix2D A, DoubleMatrix1D b, DoubleMatrix1D x)
throws IterativeSolverDoubleNotConvergedException {
checkSizes(A, b, x);
double alpha = 0, beta = 0, c = 0, d = 0;
A.zMult(x, r.assign(b), -1, 1, false);
c = (eigmax - eigmin) / 2;
d = (eigmax + eigmin) / 2;
for (iter.setFirst(); !iter.converged(r, x); iter.next()) {
M.apply(r, z);
if (iter.isFirst()) {
p.assign(z);
alpha = 2.0 / d;
} else {
beta = (alpha * c) / 2.0;
beta *= beta;
alpha = 1.0 / (d - beta);
p.assign(z, DoubleFunctions.plusMultFirst(beta));
}
A.zMult(p, q);
x.assign(p, DoubleFunctions.plusMultSecond(alpha));
r.assign(q, DoubleFunctions.plusMultSecond(-alpha));
}
return x;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy