All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tdouble.impl.DelegateDoubleMatrix2D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tdouble.impl;

import cern.colt.matrix.tdouble.DoubleMatrix1D;
import cern.colt.matrix.tdouble.DoubleMatrix2D;
import cern.colt.matrix.tdouble.DoubleMatrix3D;

/**
 * 2-d matrix holding double elements; a view wrapping another 3-d
 * matrix and therefore delegating calls to it.
 * 
 * @author Piotr Wendykier ([email protected])
 */
class DelegateDoubleMatrix2D extends DoubleMatrix2D {
    private static final long serialVersionUID = 1L;

    /*
     * The elements of the matrix.
     */
    protected DoubleMatrix3D content;

    /*
     * The index this view is bound to.
     */
    protected int index;

    protected int axis; //0-2

    /**
     * Constructs a matrix view with a given content, axis and index
     * 
     * @param newContent
     *            the content of this view
     * @param axis
     *            the axis (0 to 2) this view is bound to
     * @param index
     *            the index this view is bound to
     */
    public DelegateDoubleMatrix2D(DoubleMatrix3D newContent, int axis, int index) {
        switch (axis) {
        case 0:
            if (index < 0 || index >= newContent.slices())
                throw new IllegalArgumentException();
            setUp(newContent.rows(), newContent.columns());
            break;
        case 1:
            if (index < 0 || index >= newContent.rows())
                throw new IllegalArgumentException();
            setUp(newContent.slices(), newContent.columns());
            break;
        case 2:
            if (index < 0 || index >= newContent.columns())
                throw new IllegalArgumentException();
            setUp(newContent.slices(), newContent.rows());
            break;
        default:
            throw new IllegalArgumentException();
        }
        this.axis = axis;
        this.index = index;
        this.content = newContent;
    }

    public synchronized double getQuick(int row, int column) {
        switch (axis) {
        case 0:
            return content.getQuick(index, row, column);
        case 1:
            return content.getQuick(row, index, column);
        case 2:
            return content.getQuick(row, column, index);
        default:
            throw new IllegalArgumentException();
        }
    }

    public DoubleMatrix2D like(int rows, int columns) {
        return content.like2D(rows, columns);
    }

    public synchronized void setQuick(int row, int column, double value) {
        switch (axis) {
        case 0:
            content.setQuick(index, row, column, value);
            break;
        case 1:
            content.setQuick(row, index, column, value);
            break;
        case 2:
            content.setQuick(row, column, index, value);
            break;
        default:
            throw new IllegalArgumentException();
        }
    }

    public DoubleMatrix1D viewColumn(int column) {
        checkColumn(column);
        return new WrapperDoubleMatrix2D(this).viewColumn(column);
    }

    public Object elements() {
        return content.elements();
    }

    protected DoubleMatrix2D viewSelectionLike(int[] rowOffsets, int[] columnOffsets) {
        throw new InternalError(); // should never get called
    }

    public DoubleMatrix1D like1D(int size) {
        throw new InternalError(); // should never get called
    }

    protected DoubleMatrix1D like1D(int size, int zero, int stride) {
        throw new InternalError(); // should never get called
    }

    public DoubleMatrix1D vectorize() {
        DoubleMatrix1D v = new DenseDoubleMatrix1D(rows * columns);
        int idx = 0;
        for (int c = 0; c < columns; c++) {
            for (int r = 0; r < rows; r++) {
                v.setQuick(idx++, getQuick(r, c));
            }
        }
        return v;
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy