All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tfcomplex.impl.DenseLargeFComplexMatrix3D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tfcomplex.impl;

import java.util.concurrent.Future;

import cern.colt.matrix.tfcomplex.FComplexMatrix3D;
import edu.emory.mathcs.jtransforms.fft.FloatFFT_2D;
import edu.emory.mathcs.jtransforms.fft.FloatFFT_3D;
import edu.emory.mathcs.utils.ConcurrencyUtils;

/**
 * Dense 3-d matrix holding complex elements.
* Implementation: *

* This data structure allows to store more than 2^31 elements. Internally holds * one three-dimensional array, elements[slices][rows][2*columns]. Complex data * is represented by 2 float values in sequence, i.e. * elements[slice][row][2*column] constitute the real part and * elements[slice][row][2*column+1] constitute the imaginary part. Note that * this implementation is not synchronized. * * @author Piotr Wendykier ([email protected]) * */ public class DenseLargeFComplexMatrix3D extends WrapperFComplexMatrix3D { private static final long serialVersionUID = 1L; private float[][][] elements; private FloatFFT_3D fft3; private FloatFFT_2D fft2Slices; public DenseLargeFComplexMatrix3D(int slices, int rows, int columns) { super(null); try { setUp(slices, rows, columns); } catch (IllegalArgumentException exc) { // we can hold slices*rows*columns>Integer.MAX_VALUE cells ! if (!"matrix too large".equals(exc.getMessage())) throw exc; } elements = new float[slices][rows][2 * columns]; } public float[] getQuick(int slice, int row, int column) { return new float[] { elements[slice][row][2 * column], elements[slice][row][2 * column + 1] }; } public void setQuick(int slice, int row, int column, float[] value) { elements[slice][row][2 * column] = value[0]; elements[slice][row][2 * column + 1] = value[1]; } public void setQuick(int slice, int row, int column, float re, float im) { elements[slice][row][2 * column] = re; elements[slice][row][2 * column + 1] = im; } /** * Computes the 2D discrete Fourier transform (DFT) of each slice of this * matrix. */ public void fft2Slices() { if (fft2Slices == null) { fft2Slices = new FloatFFT_2D(rows, columns); } int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { ConcurrencyUtils.setThreadsBeginN_2D(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_2Threads(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_4Threads(Integer.MAX_VALUE); nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int s = firstSlice; s < lastSlice; s++) { fft2Slices.complexForward(elements[s]); } } }); } ConcurrencyUtils.waitForCompletion(futures); ConcurrencyUtils.resetThreadsBeginN(); ConcurrencyUtils.resetThreadsBeginN_FFT(); } else { for (int s = 0; s < slices; s++) { fft2Slices.complexForward(elements[s]); } } } /** * Computes the 3D discrete Fourier transform (DFT) of this matrix. */ public void fft3() { int oldNthreads = ConcurrencyUtils.getNumberOfThreads(); ConcurrencyUtils.setNumberOfThreads(ConcurrencyUtils.nextPow2(oldNthreads)); if (fft3 == null) { fft3 = new FloatFFT_3D(slices, rows, columns); } fft3.complexForward(elements); ConcurrencyUtils.setNumberOfThreads(oldNthreads); } /** * Computes the 2D inverse of the discrete Fourier transform (IDFT) of each * slice of this matrix. * * @param scale * if true then scaling is performed */ public void ifft2Slices(final boolean scale) { if (fft2Slices == null) { fft2Slices = new FloatFFT_2D(rows, columns); } int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { ConcurrencyUtils.setThreadsBeginN_2D(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_2Threads(Integer.MAX_VALUE); ConcurrencyUtils.setThreadsBeginN_1D_FFT_4Threads(Integer.MAX_VALUE); nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int s = firstSlice; s < lastSlice; s++) { fft2Slices.complexInverse(elements[s], scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); ConcurrencyUtils.resetThreadsBeginN(); ConcurrencyUtils.resetThreadsBeginN_FFT(); } else { for (int s = 0; s < slices; s++) { fft2Slices.complexInverse(elements[s], scale); } } } /** * Computes the 3D inverse of the discrete Fourier transform (IDFT) of this * matrix. * * @param scale * if true then scaling is performed */ public void ifft3(boolean scale) { int oldNthreads = ConcurrencyUtils.getNumberOfThreads(); ConcurrencyUtils.setNumberOfThreads(ConcurrencyUtils.nextPow2(oldNthreads)); if (fft3 == null) { fft3 = new FloatFFT_3D(slices, rows, columns); } fft3.complexInverse(elements, scale); ConcurrencyUtils.setNumberOfThreads(oldNthreads); } public float[][][] elements() { return elements; } protected FComplexMatrix3D getContent() { return this; } public FComplexMatrix3D like(int slices, int rows, int columns) { return new DenseLargeFComplexMatrix3D(slices, rows, columns); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy