cern.colt.matrix.tfloat.algo.solver.FloatQMR Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Derived from public domain software at http://www.netlib.org/templates
*/
package cern.colt.matrix.tfloat.algo.solver;
import cern.colt.matrix.Norm;
import cern.colt.matrix.tfloat.FloatMatrix1D;
import cern.colt.matrix.tfloat.FloatMatrix2D;
import cern.colt.matrix.tfloat.algo.DenseFloatAlgebra;
import cern.colt.matrix.tfloat.algo.solver.preconditioner.FloatPreconditioner;
import cern.jet.math.tfloat.FloatFunctions;
/**
* Quasi-Minimal Residual method. QMR solves the unsymmetric linear system
* Ax = b
using the Quasi-Minimal Residual method. QMR uses two
* preconditioners, and by default these are the same preconditioner.
*
* @author Templates
*/
public class FloatQMR extends AbstractFloatIterativeSolver {
/**
* Left preconditioner
*/
private FloatPreconditioner M1;
/**
* Right preconditioner
*/
private FloatPreconditioner M2;
/**
* Vectors for use in the iterative solution process
*/
private FloatMatrix1D r, y, z, v, w, p, q, d, s, v_tld, w_tld, y_tld, z_tld, p_tld;
/**
* Constructor for QMR. Uses the given vector as template for creating
* scratch vectors. Typically, the solution or the right hand side vector
* can be passed, and the template is not modified
*
* @param template
* Vector to use as template for the work vectors needed in the
* solution process
*/
public FloatQMR(FloatMatrix1D template) {
M1 = M;
M2 = M;
r = template.copy();
y = template.copy();
z = template.copy();
v = template.copy();
w = template.copy();
p = template.copy();
q = template.copy();
d = template.copy();
s = template.copy();
v_tld = template.copy();
w_tld = template.copy();
y_tld = template.copy();
z_tld = template.copy();
p_tld = template.copy();
}
/**
* Constructor for QMR. Uses the given vector as template for creating
* scratch vectors. Typically, the solution or the right hand side vector
* can be passed, and the template is not modified. Allows setting different
* right and left preconditioners
*
* @param template
* Vector to use as template for the work vectors needed in the
* solution process
* @param M1
* Left preconditioner
* @param M2
* Right preconditioner
*/
public FloatQMR(FloatMatrix1D template, FloatPreconditioner M1, FloatPreconditioner M2) {
this.M1 = M1;
this.M2 = M2;
r = template.copy();
y = template.copy();
z = template.copy();
v = template.copy();
w = template.copy();
p = template.copy();
q = template.copy();
d = template.copy();
s = template.copy();
v_tld = template.copy();
w_tld = template.copy();
y_tld = template.copy();
z_tld = template.copy();
p_tld = template.copy();
}
public FloatMatrix1D solve(FloatMatrix2D A, FloatMatrix1D b, FloatMatrix1D x)
throws IterativeSolverFloatNotConvergedException {
checkSizes(A, b, x);
float rho = 0, rho_1 = 0, xi = 0, gamma = 1.f, gamma_1 = 0, theta = 0, theta_1 = 0, eta = -1.f, delta = 0, ep = 0, beta = 0;
A.zMult(x, r.assign(b), -1, 1, false);
v_tld.assign(r);
M1.apply(v_tld, y);
rho = DenseFloatAlgebra.DEFAULT.norm(y, Norm.Two);
w_tld.assign(r);
M2.transApply(w_tld, z);
xi = DenseFloatAlgebra.DEFAULT.norm(z, Norm.Two);
for (iter.setFirst(); !iter.converged(r, x); iter.next()) {
if (rho == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown, "rho",
iter);
if (xi == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown, "xi",
iter);
v.assign(v_tld, FloatFunctions.multSecond(1 / rho));
y.assign(FloatFunctions.mult(1 / rho));
w.assign(w_tld, FloatFunctions.multSecond(1 / xi));
z.assign(FloatFunctions.mult(1 / xi));
delta = z.zDotProduct(y);
if (delta == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown,
"delta", iter);
M2.apply(y, y_tld);
M1.transApply(z, z_tld);
if (iter.isFirst()) {
p.assign(y_tld);
q.assign(z_tld);
} else {
p.assign(y_tld, FloatFunctions.plusMultFirst(-xi * delta / ep));
q.assign(z_tld, FloatFunctions.plusMultFirst(-rho * delta / ep));
}
A.zMult(p, p_tld);
ep = q.zDotProduct(p_tld);
if (ep == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown, "ep",
iter);
beta = ep / delta;
if (beta == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown,
"beta", iter);
v_tld.assign(v, FloatFunctions.multSecond(-beta)).assign(p_tld, FloatFunctions.plus);
M1.apply(v_tld, y);
rho_1 = rho;
rho = DenseFloatAlgebra.DEFAULT.norm(y, Norm.Two);
A.zMult(q, w_tld.assign(w, FloatFunctions.multSecond(-beta)), 1, 1, true);
M2.transApply(w_tld, z);
xi = DenseFloatAlgebra.DEFAULT.norm(z, Norm.Two);
gamma_1 = gamma;
theta_1 = theta;
theta = rho / (gamma_1 * beta);
gamma = 1 / (float) Math.sqrt(1 + theta * theta);
if (gamma == 0)
throw new IterativeSolverFloatNotConvergedException(FloatNotConvergedException.Reason.Breakdown,
"gamma", iter);
eta = -eta * rho_1 * gamma * gamma / (beta * gamma_1 * gamma_1);
if (iter.isFirst()) {
d.assign(p, FloatFunctions.multSecond(eta));
s.assign(p_tld, FloatFunctions.multSecond(eta));
} else {
float val = theta_1 * theta_1 * gamma * gamma;
d.assign(FloatFunctions.mult(val)).assign(p, FloatFunctions.plusMultSecond(eta));
s.assign(FloatFunctions.mult(val)).assign(p_tld, FloatFunctions.plusMultSecond(eta));
}
x.assign(d, FloatFunctions.plus);
r.assign(s, FloatFunctions.minus);
}
return x;
}
public void setPreconditioner(FloatPreconditioner M) {
super.setPreconditioner(M);
M1 = M;
M2 = M;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy