All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tint.impl.DenseColumnIntMatrix2D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tint.impl;

import java.io.IOException;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

import cern.colt.function.tint.IntFunction;
import cern.colt.function.tint.IntIntFunction;
import cern.colt.function.tint.IntProcedure;
import cern.colt.list.tint.IntArrayList;
import cern.colt.matrix.io.MatrixInfo;
import cern.colt.matrix.io.MatrixSize;
import cern.colt.matrix.io.MatrixVectorReader;
import cern.colt.matrix.tint.IntMatrix1D;
import cern.colt.matrix.tint.IntMatrix2D;
import edu.emory.mathcs.utils.ConcurrencyUtils;

/**
 * Dense 2-d matrix holding int elements. First see the package summary and javadoc tree view to get the broad picture.
 * 

* Implementation: *

* Internally holds one single contigous one-dimensional array, addressed in * column major. Note that this implementation is not synchronized. *

* Time complexity: *

* O(1) (i.e. constant time) for the basic operations get, * getQuick, set, setQuick and size, *

* Cells are internally addressed in column-major. Applications demanding utmost * speed can exploit this fact. Setting/getting values in a loop * column-by-column is quicker than row-by-row. Thus * *

 * for (int column = 0; column < columns; column++) {
 *     for (int row = 0; row < rows; row++) {
 *         matrix.setQuick(row, column, someValue);
 *     }
 * }
 * 
 * 
* * is quicker than * *
 * for (int row = 0; row < rows; row++) {
 *     for (int column = 0; column < columns; column++) {
 *         matrix.setQuick(row, column, someValue);
 *     }
 * }
 * 
 * 
* * @author Piotr Wendykier ([email protected]) * */ public class DenseColumnIntMatrix2D extends IntMatrix2D { static final long serialVersionUID = 1L; protected int[] elements; /** * Constructs a matrix with a copy of the given values. values is * required to have the form values[row][column] and have exactly * the same number of columns in every row. *

* The values are copied. So subsequent changes in values are not * reflected in the matrix, and vice-versa. * * @param values * The values to be filled into the new matrix. * @throws IllegalArgumentException * if * for any 1 <= row < values.length: values[row].length != values[row-1].length * . */ public DenseColumnIntMatrix2D(int[][] values) { this(values.length, values.length == 0 ? 0 : values[0].length); assign(values); } /** * Constructs a matrix with a given number of rows and columns. All entries * are initially 0. * * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @throws IllegalArgumentException * if * rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE * . */ public DenseColumnIntMatrix2D(int rows, int columns) { setUp(rows, columns, 0, 0, 1, rows); this.elements = new int[rows * columns]; } /** * Constructs a matrix with the given parameters. * * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @param elements * the cells. * @param rowZero * the position of the first element. * @param columnZero * the position of the first element. * @param rowStride * the number of elements between two rows, i.e. * index(i+1,j)-index(i,j). * @param columnStride * the number of elements between two columns, i.e. * index(i,j+1)-index(i,j). * @param isView * if true then a matrix view is constructed * @throws IllegalArgumentException * if * rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE * or flip's are illegal. */ public DenseColumnIntMatrix2D(int rows, int columns, int[] elements, int rowZero, int columnZero, int rowStride, int columnStride, boolean isView) { setUp(rows, columns, rowZero, columnZero, rowStride, columnStride); this.elements = elements; this.isNoView = !isView; } /** * Constructs a matrix from MatrixVectorReader. * * @param reader * matrix reader * @throws IOException */ public DenseColumnIntMatrix2D(MatrixVectorReader reader) throws IOException { MatrixInfo info; if (reader.hasInfo()) info = reader.readMatrixInfo(); else info = new MatrixInfo(true, MatrixInfo.MatrixField.Real, MatrixInfo.MatrixSymmetry.General); if (info.isPattern()) throw new UnsupportedOperationException("Pattern matrices are not supported"); if (info.isDense()) throw new UnsupportedOperationException("Dense matrices are not supported"); if (info.isComplex()) throw new UnsupportedOperationException("Complex matrices are not supported"); MatrixSize size = reader.readMatrixSize(info); setUp(size.numRows(), size.numColumns()); this.elements = new int[rows * columns]; int numEntries = size.numEntries(); int[] columnIndexes = new int[numEntries]; int[] rowIndexes = new int[numEntries]; int[] values = new int[numEntries]; reader.readCoordinate(rowIndexes, columnIndexes, values); for (int i = 0; i < numEntries; i++) { setQuick(rowIndexes[i], columnIndexes[i], values[i]); } if (info.isSymmetric()) { for (int i = 0; i < numEntries; i++) { if (rowIndexes[i] != columnIndexes[i]) { setQuick(columnIndexes[i], rowIndexes[i], values[i]); } } } else if (info.isSkewSymmetric()) { for (int i = 0; i < numEntries; i++) { if (rowIndexes[i] != columnIndexes[i]) { setQuick(columnIndexes[i], rowIndexes[i], -values[i]); } } } } public int aggregate(final IntIntFunction aggr, final IntFunction f) { if (size() == 0) throw new IllegalArgumentException("size() = 0"); final int zero = (int) index(0, 0); int a = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int a = f.apply(elements[zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride]); int d = 1; for (int c = firstColumn; --c >= lastColumn;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { a = aggr.apply(a, f.apply(elements[r * rowStride + cidx])); } d = 0; } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(elements[zero + (rows - 1) * rowStride + (columns - 1) * columnStride]); int d = 1; for (int c = columns; --c >= 0;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { a = aggr.apply(a, f.apply(elements[r * rowStride + cidx])); } d = 0; } } return a; } public int aggregate(final IntIntFunction aggr, final IntFunction f, final IntProcedure cond) { if (size() == 0) throw new IllegalArgumentException("size() = 0"); final int zero = (int) index(0, 0); int a = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int elem = elements[zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride]; int a = 0; if (cond.apply(elem) == true) { a = f.apply(elem); } int d = 1; for (int c = firstColumn; --c >= lastColumn;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } } d = 0; } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { int elem = elements[zero + (rows - 1) * rowStride + (columns - 1) * columnStride]; if (cond.apply(elem) == true) { a = f.apply(elem); } int d = 1; for (int c = columns; --c >= 0;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } } d = 0; } } return a; } public int aggregate(final IntIntFunction aggr, final IntFunction f, final IntArrayList rowList, final IntArrayList columnList) { if (size() == 0) throw new IllegalArgumentException("size() = 0"); final int zero = (int) index(0, 0); final int size = rowList.size(); final int[] rowElements = rowList.elements(); final int[] columnElements = columnList.elements(); int a = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = size / nthreads; for (int j = 0; j < nthreads; j++) { final int firstIdx = size - j * k; final int lastIdx = (j == (nthreads - 1)) ? 0 : firstIdx - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int a = f.apply(elements[zero + rowElements[firstIdx - 1] * rowStride + columnElements[firstIdx - 1] * columnStride]); for (int i = firstIdx - 1; --i >= lastIdx;) { a = aggr.apply(a, f.apply(elements[zero + rowElements[i] * rowStride + columnElements[i] * columnStride])); } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(elements[zero + rowElements[size - 1] * rowStride + columnElements[size - 1] * columnStride]); for (int i = size - 1; --i >= 0;) { a = aggr.apply(a, f .apply(elements[zero + rowElements[i] * rowStride + columnElements[i] * columnStride])); } } return a; } public int aggregate(final IntMatrix2D other, final IntIntFunction aggr, final IntIntFunction f) { if (!(other instanceof DenseColumnIntMatrix2D)) { return super.aggregate(other, aggr, f); } checkShape(other); if (size() == 0) throw new IllegalArgumentException("size() = 0"); final int zero = (int) index(0, 0); final int zeroOther = (int) other.index(0, 0); final int rowStrideOther = other.rowStride(); final int columnStrideOther = other.columnStride(); final int[] otherElements = (int[]) other.elements(); int a = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int a = f.apply(elements[zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride], otherElements[zeroOther + (rows - 1) * rowStrideOther + (firstColumn - 1) * columnStrideOther]); int d = 1; for (int c = firstColumn; --c >= lastColumn;) { int cidx = zero + c * columnStride; int cidxOther = zeroOther + c * columnStrideOther; for (int r = rows - d; --r >= 0;) { a = aggr.apply(a, f.apply(elements[r * rowStride + cidx], otherElements[r * rowStrideOther + cidxOther])); } d = 0; } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { int d = 1; a = f.apply(elements[zero + (rows - 1) * rowStride + (columns - 1) * columnStride], otherElements[zeroOther + (rows - 1) * rowStrideOther + (columns - 1) * columnStrideOther]); for (int c = columns; --c >= 0;) { int cidx = zero + c * columnStride; int cidxOther = zeroOther + c * columnStrideOther; for (int r = rows - d; --r >= 0;) { a = aggr.apply(a, f.apply(elements[r * rowStride + cidx], otherElements[r * rowStrideOther + cidxOther])); } d = 0; } } return a; } public IntMatrix2D assign(final IntFunction function) { if (function instanceof cern.jet.math.tint.IntMult) { // x[i] = mult*x[i] int multiplicator = ((cern.jet.math.tint.IntMult) function).multiplicator; if (multiplicator == 1) return this; if (multiplicator == 0) return assign(0); } final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; // specialization for speed if (function instanceof cern.jet.math.tint.IntMult) { // x[i] = mult*x[i] int multiplicator = ((cern.jet.math.tint.IntMult) function).multiplicator; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] *= multiplicator; i -= rowStride; } idx -= columnStride; } } else { // the general case x[i] = f(x[i]) for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = function.apply(elements[i]); i -= rowStride; } idx -= columnStride; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; if (function instanceof cern.jet.math.tint.IntMult) { // x[i] = mult*x[i] int multiplicator = ((cern.jet.math.tint.IntMult) function).multiplicator; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] *= multiplicator; i -= rowStride; } idx -= columnStride; } } else { // the general case x[i] = f(x[i]) for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = function.apply(elements[i]); i -= rowStride; } idx -= columnStride; } } } return this; } public IntMatrix2D assign(final IntProcedure cond, final IntFunction function) { final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int elem; int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elem = elements[i]; if (cond.apply(elem) == true) { elements[i] = function.apply(elem); } i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int elem; int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elem = elements[i]; if (cond.apply(elem) == true) { elements[i] = function.apply(elem); } i -= rowStride; } idx -= columnStride; } } return this; } public IntMatrix2D assign(final IntProcedure cond, final int value) { final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int elem; int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elem = elements[i]; if (cond.apply(elem) == true) { elements[i] = value; } i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int elem; int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elem = elements[i]; if (cond.apply(elem) == true) { elements[i] = value; } i -= rowStride; } idx -= columnStride; } } return this; } public IntMatrix2D assign(final int value) { final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = value; i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = value; i -= rowStride; } idx -= columnStride; } } return this; } public IntMatrix2D assign(final int[] values) { if (values.length != size()) throw new IllegalArgumentException("Must have same length: length=" + values.length + " rows()*columns()=" + rows() * columns()); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView) { System.arraycopy(values, 0, this.elements, 0, values.length); } else { final int zero = (int) index(0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; int idxOther = (rows - 1) + (firstColumn - 1) * rows; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = values[idxOther--]; i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; int idxOther = values.length - 1; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elements[i] = values[idxOther--]; i -= rowStride; } idx -= columnStride; } } } return this; } public IntMatrix2D assign(final int[][] values) { if (values.length != rows) throw new IllegalArgumentException("Must have same number of rows: rows=" + values.length + "columns()=" + rows()); int nthreads = ConcurrencyUtils.getNumberOfThreads(); final int zero = (int) index(0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = rows / nthreads; for (int j = 0; j < nthreads; j++) { final int firstRow = rows - j * k; final int lastRow = (j == (nthreads - 1)) ? 0 : firstRow - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (firstRow - 1) * rowStride + (columns - 1) * columnStride; for (int r = firstRow; --r >= lastRow;) { int[] currentRow = values[r]; if (currentRow.length != columns) throw new IllegalArgumentException( "Must have same number of columns in every row: column=" + currentRow.length + "columns()=" + columns()); for (int i = idx, c = columns; --c >= 0;) { elements[i] = currentRow[c]; i -= columnStride; } idx -= rowStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int r = rows; --r >= 0;) { int[] currentRow = values[r]; if (currentRow.length != columns) throw new IllegalArgumentException("Must have same number of columns in every row: column=" + currentRow.length + "columns()=" + columns()); for (int i = idx, c = columns; --c >= 0;) { elements[i] = currentRow[c]; i -= columnStride; } idx -= rowStride; } } return this; } public IntMatrix2D assign(final IntMatrix2D source) { // overriden for performance only if (!(source instanceof DenseColumnIntMatrix2D)) { super.assign(source); return this; } DenseColumnIntMatrix2D other = (DenseColumnIntMatrix2D) source; if (other == this) return this; // nothing to do checkShape(other); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView && other.isNoView) { // quickest System.arraycopy(other.elements, 0, elements, 0, elements.length); return this; } if (haveSharedCells(other)) { IntMatrix2D c = other.copy(); if (!(c instanceof DenseColumnIntMatrix2D)) { // should not happen super.assign(other); return this; } other = (DenseColumnIntMatrix2D) c; } final int zeroOther = (int) other.index(0, 0); final int zero = (int) index(0, 0); final int columnStrideOther = other.columnStride; final int rowStrideOther = other.rowStride; final int[] otherElements = other.elements; if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; int idxOther = zeroOther + (rows - 1) * rowStrideOther + (firstColumn - 1) * columnStrideOther; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; int idxOther = zeroOther + (rows - 1) * rowStrideOther + (columns - 1) * columnStrideOther; for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } return this; } public IntMatrix2D assign(final IntMatrix2D y, final IntIntFunction function) { if (function instanceof cern.jet.math.tint.IntPlusMultSecond) { int multiplicator = ((cern.jet.math.tint.IntPlusMultSecond) function).multiplicator; if (multiplicator == 0) { // x[i] = x[i] + 0*y[i] return this; } } if (function instanceof cern.jet.math.tint.IntPlusMultFirst) { int multiplicator = ((cern.jet.math.tint.IntPlusMultFirst) function).multiplicator; if (multiplicator == 0) { // x[i] = 0*x[i] + y[i] return assign(y); } } if (!(y instanceof DenseColumnIntMatrix2D)) { super.assign(y, function); return this; } DenseColumnIntMatrix2D other = (DenseColumnIntMatrix2D) y; checkShape(y); final int[] otherElements = other.elements; final int zeroOther = (int) other.index(0, 0); final int zero = (int) index(0, 0); final int columnStrideOther = other.columnStride; final int rowStrideOther = other.rowStride; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; int idxOther = zeroOther + (rows - 1) * rowStrideOther + (firstColumn - 1) * columnStrideOther; if (function == cern.jet.math.tint.IntFunctions.mult) { // x[i] = x[i]*y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] *= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (function == cern.jet.math.tint.IntFunctions.div) { // x[i] = x[i] / y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] /= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (function instanceof cern.jet.math.tint.IntPlusMultSecond) { int multiplicator = ((cern.jet.math.tint.IntPlusMultSecond) function).multiplicator; if (multiplicator == 1) { // x[i] = x[i] + y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (multiplicator == -1) { // x[i] = x[i] - y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] -= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else { // the general case // x[i] = x[i] + mult*y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += multiplicator * otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } else if (function instanceof cern.jet.math.tint.IntPlusMultFirst) { int multiplicator = ((cern.jet.math.tint.IntPlusMultFirst) function).multiplicator; if (multiplicator == 1) { // x[i] = x[i] + y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (multiplicator == -1) { // x[i] = -x[i] + y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = otherElements[j] - elements[i]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else { // the general case // x[i] = mult*x[i] + y[i] for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = multiplicator * elements[i] + otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } else { // the general case x[i] = f(x[i],y[i]) for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = function.apply(elements[i], otherElements[j]); i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; int idxOther = zeroOther + (rows - 1) * rowStrideOther + (columns - 1) * columnStrideOther; if (function == cern.jet.math.tint.IntFunctions.mult) { // x[i] = x[i]*y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] *= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (function == cern.jet.math.tint.IntFunctions.div) { // x[i] = x[i] / y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] /= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (function instanceof cern.jet.math.tint.IntPlusMultSecond) { int multiplicator = ((cern.jet.math.tint.IntPlusMultSecond) function).multiplicator; if (multiplicator == 1) { // x[i] = x[i] + y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (multiplicator == -1) { // x[i] = x[i] - y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] -= otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else { // the general case // x[i] = x[i] + mult*y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += multiplicator * otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } else if (function instanceof cern.jet.math.tint.IntPlusMultFirst) { int multiplicator = ((cern.jet.math.tint.IntPlusMultFirst) function).multiplicator; if (multiplicator == 1) { // x[i] = x[i] + y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] += otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else if (multiplicator == -1) { // x[i] = -x[i] + y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = otherElements[j] - elements[i]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } else { // the general case // x[i] = mult*x[i] + y[i] for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = multiplicator * elements[i] + otherElements[j]; i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } else { // the general case x[i] = f(x[i],y[i]) for (int c = columns; --c >= 0;) { for (int i = idx, j = idxOther, r = rows; --r >= 0;) { elements[i] = function.apply(elements[i], otherElements[j]); i -= rowStride; j -= rowStrideOther; } idx -= columnStride; idxOther -= columnStrideOther; } } } return this; } public IntMatrix2D assign(final IntMatrix2D y, final IntIntFunction function, IntArrayList rowList, IntArrayList columnList) { checkShape(y); if (!(y instanceof DenseColumnIntMatrix2D)) { super.assign(y, function); return this; } DenseColumnIntMatrix2D other = (DenseColumnIntMatrix2D) y; final int size = rowList.size(); final int[] rowElements = rowList.elements(); final int[] columnElements = columnList.elements(); final int[] otherElements = other.elements(); final int zeroOther = (int) other.index(0, 0); final int zero = (int) index(0, 0); final int columnStrideOther = other.columnStride(); final int rowStrideOther = other.rowStride(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = size / nthreads; for (int j = 0; j < nthreads; j++) { final int firstIdx = size - j * k; final int lastIdx = (j == (nthreads - 1)) ? 0 : firstIdx - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int i = firstIdx; --i >= lastIdx;) { idx = zero + rowElements[i] * rowStride + columnElements[i] * columnStride; idxOther = zeroOther + rowElements[i] * rowStrideOther + columnElements[i] * columnStrideOther; elements[idx] = function.apply(elements[idx], otherElements[idxOther]); } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int i = size; --i >= 0;) { idx = zero + rowElements[i] * rowStride + columnElements[i] * columnStride; idxOther = zeroOther + rowElements[i] * rowStrideOther + columnElements[i] * columnStrideOther; elements[idx] = function.apply(elements[idx], otherElements[idxOther]); } } return this; } public int cardinality() { int cardinality = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); final int zero = (int) index(0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; Integer[] results = new Integer[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int cardinality = 0; int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { if (elements[i] != 0) cardinality++; i -= rowStride; } idx -= columnStride; } return cardinality; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (Integer) futures[j].get(); } cardinality = results[0]; for (int j = 1; j < nthreads; j++) { cardinality += results[j]; } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { if (elements[i] != 0) cardinality++; i -= rowStride; } idx -= columnStride; } } return cardinality; } public int[] elements() { return elements; } public IntMatrix2D forEachNonZero(final cern.colt.function.tint.IntIntIntFunction function) { final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { int value = elements[i]; if (value != 0) { elements[i] = function.apply(r, c, value); } i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { int value = elements[i]; if (value != 0) { elements[i] = function.apply(r, c, value); } i -= rowStride; } idx -= columnStride; } } return this; } /** * Returns a new matrix that has the same elements as this matrix, but they * are addressed internally in row major. This method creates a new object * (not a view), so changes in the returned matrix are NOT reflected in this * matrix. * * @return this matrix with elements addressed internally in row major */ public DenseIntMatrix2D getRowMajor() { DenseIntMatrix2D R = new DenseIntMatrix2D(rows, columns); final int zeroR = (int) R.index(0, 0); final int rowStrideR = R.rowStride(); final int columnStrideR = R.columnStride(); final int[] elementsR = R.elements(); final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; int idxR = zeroR + (rows - 1) * rowStrideR + (firstColumn - 1) * columnStrideR; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, j = idxR, r = rows; --r >= 0;) { elementsR[j] = elements[i]; i -= rowStride; j -= rowStrideR; } idx -= columnStride; idxR -= columnStrideR; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; int idxR = zeroR + (rows - 1) * rowStrideR + (columns - 1) * columnStrideR; for (int c = columns; --c >= 0;) { for (int i = idx, j = idxR, r = rows; --r >= 0;) { elementsR[j] = elements[i]; i -= rowStride; j -= rowStrideR; } idx -= columnStride; idxR -= columnStrideR; } } return R; } public void getNegativeValues(final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { rowList.clear(); columnList.clear(); valueList.clear(); int idx = (int) index(0, 0); for (int c = 0; c < columns; c++) { for (int i = idx, r = 0; r < rows; r++) { int value = elements[i]; if (value < 0) { rowList.add(r); columnList.add(c); valueList.add(value); } i += rowStride; } idx += columnStride; } } public void getNonZeros(final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { rowList.clear(); columnList.clear(); valueList.clear(); int idx = (int) index(0, 0); for (int c = 0; c < columns; c++) { for (int i = idx, r = 0; r < rows; r++) { int value = elements[i]; if (value != 0) { rowList.add(r); columnList.add(c); valueList.add(value); } i += rowStride; } idx += columnStride; } } public void getPositiveValues(final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { rowList.clear(); columnList.clear(); valueList.clear(); int idx = (int) index(0, 0); for (int c = 0; c < columns; c++) { for (int i = idx, r = 0; r < rows; r++) { int value = elements[i]; if (value > 0) { rowList.add(r); columnList.add(c); valueList.add(value); } i += rowStride; } idx += columnStride; } } public int getQuick(int row, int column) { return elements[rowZero + row * rowStride + columnZero + column * columnStride]; } public long index(int row, int column) { return rowZero + row * rowStride + columnZero + column * columnStride; } public IntMatrix2D like(int rows, int columns) { return new DenseColumnIntMatrix2D(rows, columns); } public IntMatrix1D like1D(int size) { return new DenseIntMatrix1D(size); } public int[] getMaxLocation() { int rowLocation = 0; int columnLocation = 0; final int zero = (int) index(0, 0); int maxValue = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int[][] results = new int[nthreads][3]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public int[] call() throws Exception { int maxValue = elements[zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride]; int rowLocation = rows - 1; int columnLocation = firstColumn - 1; int elem; int d = 1; for (int c = firstColumn; --c >= lastColumn;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (maxValue < elem) { maxValue = elem; rowLocation = r; columnLocation = c; } } d = 0; } return new int[] { maxValue, rowLocation, columnLocation }; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (int[]) futures[j].get(); } maxValue = results[0][0]; rowLocation = (int) results[0][1]; columnLocation = (int) results[0][2]; for (int j = 1; j < nthreads; j++) { if (maxValue < results[j][0]) { maxValue = results[j][0]; rowLocation = (int) results[j][1]; columnLocation = (int) results[j][2]; } } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { maxValue = elements[zero + (rows - 1) * rowStride + (columns - 1) * columnStride]; rowLocation = rows - 1; columnLocation = columns - 1; int elem; int d = 1; for (int c = columns; --c >= 0;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (maxValue < elem) { maxValue = elem; rowLocation = r; columnLocation = c; } } d = 0; } } return new int[] { maxValue, rowLocation, columnLocation }; } public int[] getMinLocation() { int rowLocation = 0; int columnLocation = 0; final int zero = (int) index(0, 0); int minValue = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int[][] results = new int[nthreads][3]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public int[] call() throws Exception { int minValue = elements[zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride]; int rowLocation = rows - 1; int columnLocation = firstColumn - 1; int elem; int d = 1; for (int c = firstColumn; --c >= lastColumn;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (minValue > elem) { minValue = elem; rowLocation = r; columnLocation = c; } } d = 0; } return new int[] { minValue, rowLocation, columnLocation }; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (int[]) futures[j].get(); } minValue = results[0][0]; rowLocation = (int) results[0][1]; columnLocation = (int) results[0][2]; for (int j = 1; j < nthreads; j++) { if (minValue > results[j][0]) { minValue = results[j][0]; rowLocation = (int) results[j][1]; columnLocation = (int) results[j][2]; } } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { minValue = elements[zero + (rows - 1) * rowStride + (columns - 1) * columnStride]; rowLocation = rows - 1; columnLocation = columns - 1; int elem; int d = 1; for (int c = columns; --c >= 0;) { int cidx = zero + c * columnStride; for (int r = rows - d; --r >= 0;) { elem = elements[r * rowStride + cidx]; if (minValue > elem) { minValue = elem; rowLocation = r; columnLocation = c; } } d = 0; } } return new int[] { minValue, rowLocation, columnLocation }; } public void setQuick(int row, int column, int value) { elements[rowZero + row * rowStride + columnZero + column * columnStride] = value; } public int[][] toArray() { final int[][] values = new int[rows][columns]; int nthreads = ConcurrencyUtils.getNumberOfThreads(); final int zero = (int) index(0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { values[r][c] = elements[i]; i -= rowStride; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { values[r][c] = elements[i]; i -= rowStride; } idx -= columnStride; } } return values; } public IntMatrix1D vectorize() { final int size = (int) size(); IntMatrix1D v = new DenseIntMatrix1D(size); if (isNoView == true) { System.arraycopy(elements, 0, v.elements(), 0, size); } else { final int zero = (int) index(0, 0); final int zeroOther = (int) v.index(0); final int strideOther = v.stride(); final int[] elementsOther = (int[]) v.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; final int firstIdxOther = size - j * k * rows; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; int idxOther = zeroOther + (firstIdxOther - 1) * strideOther; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { elementsOther[idxOther] = elements[i]; i -= rowStride; idxOther -= strideOther; } idx -= columnStride; } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; int idxOther = zeroOther + size - 1; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { elementsOther[idxOther] = elements[i]; i -= rowStride; idxOther--; } idx -= columnStride; } } } return v; } public int zSum() { int sum = 0; if (elements == null) throw new InternalError(); final int zero = (int) index(0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_2D())) { nthreads = Math.min(nthreads, columns); Future[] futures = new Future[nthreads]; int k = columns / nthreads; for (int j = 0; j < nthreads; j++) { final int firstColumn = columns - j * k; final int lastColumn = (j == (nthreads - 1)) ? 0 : firstColumn - k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int sum = 0; int idx = zero + (rows - 1) * rowStride + (firstColumn - 1) * columnStride; for (int c = firstColumn; --c >= lastColumn;) { for (int i = idx, r = rows; --r >= 0;) { sum += elements[i]; i -= rowStride; } idx -= columnStride; } return sum; } }); } try { for (int j = 0; j < nthreads; j++) { sum += (Integer) futures[j].get(); } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx = zero + (rows - 1) * rowStride + (columns - 1) * columnStride; for (int c = columns; --c >= 0;) { for (int i = idx, r = rows; --r >= 0;) { sum += elements[i]; i -= rowStride; } idx -= columnStride; } } return sum; } protected boolean haveSharedCellsRaw(IntMatrix2D other) { if (other instanceof SelectedDenseColumnIntMatrix2D) { SelectedDenseColumnIntMatrix2D otherMatrix = (SelectedDenseColumnIntMatrix2D) other; return this.elements == otherMatrix.elements; } else if (other instanceof DenseColumnIntMatrix2D) { DenseColumnIntMatrix2D otherMatrix = (DenseColumnIntMatrix2D) other; return this.elements == otherMatrix.elements; } return false; } protected IntMatrix1D like1D(int size, int zero, int stride) { return new DenseIntMatrix1D(size, this.elements, zero, stride, true); } protected IntMatrix2D viewSelectionLike(int[] rowOffsets, int[] columnOffsets) { return new SelectedDenseColumnIntMatrix2D(this.elements, rowOffsets, columnOffsets, 0); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy